
Custom Core Software Getting Started Guide

Version 1.2

© SiFive, Inc.

Custom Core Software Getting Started

Guide

Proprietary Notice

Copyright © 2019, SiFive Inc. All rights reserved.

Information in this document is provided "as is," with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

Version

1.0
March 11, 2019 • Initial release

Version

1.1
June 21, 2019 • Small fixes, graphical detail, code size options

Version

1.2
Oct 22, 2019

• Fix typos

• Updated build flow diagram

• Add Freedom Studio method to create BSP

Contents

1 Custom Core Software Development Getting Started Guide2

1.1 Introduction .. 2

1.2 When is it Required to Generate a New BSP? ...2

1.3 High Level Flow Using E24 Custom Core Example ..3

1.3.1 Detail .. 3

1.4 Generate New BSP Using Freedom Studio ...3

1.5 Generate new BSP from the Linux Command Line ..4

1.5.1 Design Tarball ..4

1.5.2 Device Tree Tools...4

1.5.3 Freedom E SDK ...5

1.6 Create and Build Example ...6

1.6.1 Build Options ...6

1.6.2 Create New Project Space ..8

1.6.3 Freedom Studio IDE ...9

1

Chapter 1

Custom Core Software Development

Getting Started Guide

1.1 Introduction

SiFive custom core designs are packaged with a Device Tree Specification (design.dts) file that

is used to describe the hardware. This file is the foundation for generating the different linker

scripts and the header files required for software development.

These components can be found in the bsp path within the github repository freedom-e-sdk. For

custom cores, a unique BSP (board support package) is automatically generated and included

in the design package, also known as the design tarball. This document describes the manual

process used to generate new header and linker script files for custom cores.

1.2 When is it Required to Generate a New BSP?

A new BSP should be generated when custom integration work is required in the design after it

is initially received from SiFive. Some examples where a custom design can get out of phase

with the hardware description in design.dts are as follows:

• Adding IP into the design which requires software support.

• Changing the total number of interrupt lines, or changes to interrupt routing.

• Relocatable address mapping included in design. This is a custom SiFive feature.

• Updating the chosen node which defines the software entry point.

When these types of changes are introduced, then the design.dts file should be updated to

reflect the new design. Then, new linker and header files can be regenerated based on

design.dts so software components reflect the design accurately.

2

https://github.com/sifive/freedom-e-sdk

1.3 High Level Flow Using E24 Custom Core Example

A high level flow is shown in the below diagram below, showing the input and output compo-

nents required to generate a new BSP.

1.3.1 Detail

The .dts file contains information in text format that describes the hardware in detail, including

base address and size for memory and peripherals. There is a specification that describes the

format of this file. For more information see devicetree.org. This file is an output from the design

environment and one exists for every custom core.

The .h file contains macros, include files, and structures which declare all instances of memory

mapped features of the device.

The .lds file contains formatted, named sections for code and data. This file is used by the tool-

chain to link compiled code and data sections to the actual hardware memory map.

1.4 Generate New BSP Using Freedom Studio

Freedom Studio users now have the ability to generate a new BSP from within the Eclipse IDE.

This method is convenient for Windows or Mac users for example, since it does not require a

3

https://www.devicetree.org/

dedicated Linux environment. Once a custom core design tarball has been created on

sifive.com, then use Freedom Studio to generate a new BSP using the following steps.

• Download Freedom Studio from https://www.sifive.com/boards

• Extract the archive into a path which does not contain any spaces.

• Launch Freedom Studio from the root path of the extracted package.

• Click I want to import my Core IP Deliverable on the welcome screen. Select the Import

from an IP package archive and select your tar.gz file, which is the custom core tarball.

• Select Help → Open Freedom Studio Manual from the top menu of Freedom Studio.

• Follow the steps to build freedom-devicetree-tools and rebuild your bsp, as described in

the Manual.

1.5 Generate new BSP from the Linux Command Line

Generating the new linker script and header file requires the design.dts file contained within the

design tarball, and utilities within two github repositories.

For this example we will reference a new workspace that contains the design tarball and two

github repos.

my-new-core-tarball
freedom-devicetree-tools
freedom-e-sdk

1.5.1 Design Tarball

Extract the tarball for the custom core. The design.dts file is located here and used to generate

the .lds and .h files.

> mkdir my-new-core-tarball
> cp my_new_tarball_v0p0.tar.gz /path/to/my-new-core-tarball
> cd /path/to/my-new-core-tarball
> tar -xvf tarball_v0p0.tar.gz

The design.dts file resides in freedom-e-sdk/bsp/design-rtl and optionally,

freedom-e-sdk/bsp/design-arty path. The design-arty BSP will only exist if the design tar-

ball includes a bitfile for debugging on an Arty 100T FPGA board.

1.5.2 Device Tree Tools

Setup the device tree tools repository which contains C++ utilities to generate the various com-

ponents needed for software development. Refer to the README for the required packages

necessary to use the tools. Also note that a C++ 11 compiler is required to build the binaries.

> git clone https://github.com/sifive/freedom-devicetree-tools.git
> cd freedom-devicetree-tools

4

https://www.sifive.com/boards

> git submodule update --init --recursive
> autoreconf -i

This step should show output similar to the following

> configure.ac:23: installing './compile'
> configure.ac:11: installing './install-sh'
> configure.ac:11: installing './missing'
> ...

Now, run configure

> ./configure

You should see the following steps at this point

> checking for a BSD-compatible install... /usr/bin/install -c
> checking whether build environment is sane... yes
> checking for a thread-safe mkdir -p... /bin/mkdir -p
> checking for gawk... gawk
> checking whether make sets $(MAKE)... yes
...
> checking for dtc... yes
> checking that generated files are newer than configure... done
> configure: creating ./config.status
> config.status: creating Makefile
> config.status: executing depfiles commands

Now run make

> make

Now the binaries have been built and the freedom-devicetree-tools location needs to be

added to your system PATH.

1.5.3 Freedom E SDK

In this next step, we clone the freedom-e-sdk repository which contains software examples for

the SiFive standard cores. This repository contains the update-targets.sh script that uses the

Device Tree Tools binaries we built in the previous step to create the custom header file and

linker script file.

> git clone --recursive https://github.com/sifive/freedom-e-sdk.git
> cd freedom-e-sdk/bsp
> mkdir my-new-core

The design.dts file from the tarball should now be moved into /bsp/my-new-core created in the

previous step.

> cp /path/to/my-new-core-tarball/info/design.dts \
/path/to/freedom-e-sdk/bsp/my-new-core

5

From the freedom-e-sdk/bsp path, show the arguments for the generation script using the fol-

lowing command

> ./update-targets.sh --help

Generate the BSP components

> ./update-targets.sh --target-name my-new-core \
--sdk-path=./../ --target-dts=./my-new-core/design.dts

All of the generated BSP components now reside in /path/to/freedom-e-sdk/bsp/my-new-core.

1.6 Create and Build Example

The BSP also requires a settings.mk file. The settings.mk file is used to pass -march (architec-

ture) and -mabi (application binary interface) information to the RISC-V GNU Toolchain. Earlier

versions of freedom-devicetree-tools did not automatically generate a settings.mk file. If one

does not exist, copy settings.mk from a different freedom-e-sdk/bsp with similar architecture.

Check the file contents to ensure the correct architecture is declared in this file for the new

design.

We now have the required software components in freedom-e-sdk/bsp/my-new-core to start

compiling examples and creating your new projects.

To build an example project

> cd freedom-e-sdk
> make PROGRAM=hello TARGET=my-new-core CONFIGURATION=debug software

The output file(s) will reside in /software/debug or /software/release path depending on the

build CONFIGURATION selected. The CONFIGURATION options include debug or release.

To clean the build, replace 'software' above with 'clean'. To see all build options, use 'make

help'.

1.6.1 Build Options

The debug configuration uses level zero optimizations by specifying compiler option -O0. This

default selection does not optimize for code size. The debug configuration additionally uses -g

to include debug symbols in the .elf file, but this does not change the code size sections. The

release configuration uses the compiler option -Os to produce the smallest code footprint.

These optimizations can be changed by modifying freedom-e-sdk/debug.mk or freedom-e-sdk/

release.mk files.

6

Options for Code Size

For example, the -Os optimization will optimize for size for a possible reduction in performance.

Consider -O2 or -O3 based on the application needs. Smaller code size can be achieved by

using newlib-nano library by specifying --specs=nano.specs.

The code size summary below shows how the different options directly affect code size for one

of the example programs available in the freedom-e-sdk repository. The code size summary can

be shown by using the riscv64-unknown-elf-size utility which is part of the prebuilt GCC

toolchain available on sifive.com.

Level 0 Optimizations

RISCV_CFLAGS += -O0

riscv64-unknown-elf-size local-interrupt.elf
text data bss dec hex

65001 8888 23884 97773 17ded

Use newlib library

RISCV_CFLAGS += -O0 --specs=nano.specs

riscv64-unknown-elf-size local-interrupt.elf
text data bss dec hex

21409 6496 26280 54185 d3a9

Level 2 Optimizations and use smaller newlib library

RISCV_CFLAGS += -O2 --specs=nano.specs

riscv64-unknown-elf-size local-interrupt.elf
text data bss dec hex

14069 6504 26272 46845 b6fd

Options for Code Location

Multiple linker files exist in each BSP for flexibility in choosing the proper configuration based on

application requirements. The following options describe the linker memory map options created

for each BSP:

• metal.default.lds places code and data into SPI flash.

• metal.ramrodata.lds places read-only data into RAM for higher performance but executes

code by fetching instructions from SPI flash.

• metal.scratchpad.lds places all code and data into RAM. This provides the best perfor-

mance, provided enough memory exists for the targeted application.

• Note: The scratchpad option may not compile successfully for applications which require

more memory than available on-target.

7

The default linker file is metal.default.lds. To specify a new linker file on the command line

> make PROGRAM=hello TARGET=my-new-core \
CONFIGURATION=debug LINK_TARGET=ramrodata software

This option will select metal.ramrodata.lds as the linker file.

The default build configuration is debug so the code size is not optimized. To configure a build

for best code size, specify the release configuration

> make PROGRAM=hello TARGET=my-new-core \
CONFIGURATION=release software

1.6.2 Create New Project Space

Now that we have a custom BSP setup, a separate project can be created using the freedom-e-

sdk make process. Here we use the standalone option which creates a new project in a loca-

tion you specify, complete with supporting Makefiles.

> cd freedom-e-sdk
> make help

A portion of the help menu will display the following

> standalone STANDALONE_DEST=/path/to/desired/location
> [PROGRAM=hello] [TARGET=sifive-hifive1]
> Exports a program for a single target into a standalone
> project directory at STANDALONE_DEST.

To create a standalone project that uses interrupts for the new BSP

> make PROGRAM=local-interrupt TARGET=my-new-core \
CONFIGURATION=debug STANDALONE_DEST=/path/to/my/new/proj standalone

Executing this command will copy all source code to your new project path specified by STAND-

ALONE_DEST. This includes all of the freedom-metal API code, the specified example, and all

makefile components.

To build your new project, navigate to /path/to/my/new/proj and type

> make

Simply using make will use the default build options, including the default linker file and the opti-

mizations defined in the debug.mk file. Additional command line options include

LINK_TARGET=ramrodata or LINK_TARGET=scratchpad, and CONFIGURATION=release. These

are the same command line options described in the previous section.

New source code files (.s, .h, .c) can be added to the /src path in this new project space and

they will be included automatically by the make files. This new project space can be used for

future project development.

8

1.6.3 Freedom Studio IDE

It is important to note that for users who prefer an integrated IDE for editing, compiling, and

debugging, the Eclipse based IDE Freedom Studio is available on SiFive.com. Freedom Studio

is packaged with a prebuilt toolchain, OpenOCD/GDB debugger, and a tagged release of the

freedom-e-sdk repository, which provides the platform for example code and the flexible free-

dom-metal API.

Freedom Studio has a new project creation process that leverages the standalone make option

within freedom-e-sdk, described previously. New project creation within Freedom Studio is as

easy as clicking a button. Refer to the Freedom Studio Manual available at

https://www.sifive.com/documentation. This is the quickest way to get up and running on SiFive

hardware.

9

https://www.sifive.com/documentation

	Custom Core Software Getting Started Guide
	Custom Core Software Getting Started Guide
	Proprietary Notice
	Release Information

	Chapter 1 Custom Core Software Development Getting Started Guide
	1.1 Introduction
	1.2 When is it Required to Generate a New BSP?
	1.3 High Level Flow Using E24 Custom Core Example
	1.3.1 Detail

	1.4 Generate New BSP Using Freedom Studio
	1.5 Generate new BSP from the Linux Command Line
	1.5.1 Design Tarball
	1.5.2 Device Tree Tools
	1.5.3 Freedom E SDK

	1.6 Create and Build Example
	1.6.1 Build Options
	Options for Code Size
	Options for Code Location

	1.6.2 Create New Project Space
	1.6.3 Freedom Studio IDE

