SiFive E76-MC Core Complex Manual
21G1.01.00

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

SiFive E76-MC Core Complex Manual

Proprietary Notice

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

SiFive E76-MC Core Complex Manual by SiFive, Inc. is licensed under Attribution-NonCommer-
cial-NoDerivatives 4.0 International. To view a copy of this license, visit: http://creativecom-
mons.org/licenses/by-nc-nd/4.0

Information in this document is provided “as is,” with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether
express or implied, including, but not limited to, the implied warranties or conditions of mer-
chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-
cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0

SiFive E76-MC Core Complex Manual 21G1.01.00

Contents

LisSt Of TADIES ... 10
LiSt Of FIQUIES ... 15
1 INtrodUCHION ... 18
1.1 ADOUL thiS DOCUMENT ... iiiiti e e eeiti e e eetie e e et e e et e e e e et s s e e e et e e s e eta e e e eebt s e aeeennan 18

1.2 ADOUL thiS REIEASEuuuiiieiiiii ettt ettt e e et e e e e et e e e e eeeas 19

1.3 E76-MC COre COMPIEX OVEIVIEWceuuiiirieeeiiieeete ettt e e et e e et e eet s eeeneeeenaeeeen s eeenaaaees 19

1.4 E7 RISC-V COIBS..iiiituiiiiiiitie ettt e e ettt e ettt e e e e et e e e e e et e e e et b aeaeeeab s eeeasbaeeaeeres 20

1.5 MEBIMONY SYSTEIM .. iiiiiti et ettt ettt e e ettt s e ettt e e e e ettt e e e e et e e e eetba s e e e e eata e eeeeebaneeaaenes 20

T 101 (T U o £ PP UPPTRTR PPN 21

1.7 DEDUG SUPPOIT ..ueieiet ettt ettt e ettt e ettt s e e e ettt e e e e et e e e eetbaneeaaeata s eeeenbaseaeenes 21

1.8 COMPLIBNCE .. ceeitei ettt ettt e et ettt e e e ettt s e e e e et e e e e e et e e e e e ata e e e eeba e eaenes 21

2 List of Abbreviations and Terms ..., 22
3 E7 RISC-V COF@ ... 25
0 R S W o] o To 4 £=To 1Y oo [= TSP UPPPPTR 25

3.2 INSLrUCtioON MEMOIY SYSTEM ...uuiiiiti it e et e e e e e e e e e e e e e e en e e eeaeeeeas 25
3.2.1 EXECULION MEMOIY SPACE .vuuuiiiiitiiiieiiiiiaeeeeeatieeeeeattseeseetnseeaeestnaeeaeeranaeaeenes 26

3.2.2 L1 INSLIUCHON CACRE ...uu i iiiiiiiieieeiii ettt et e e e e e eaa e e aeees 26

3.2.3 CaChe MaiNtENANCE. . .uu i iiiirtiieeeeiitie e et e e ettt e e et e e e e et e e e e e et e e e eetbaeeaeees 27

3.2.4 Coherence With an L2 Cacheccouuiiiiiiii e 27

3.2.5 Instruction Tightly-Integrated Memory (ITIM)c.oiiiiiiiiiiineie e 27

3.2.6 INStruction FEtCh UNit.......ccuuiiiiiiiiii et 27

3.2.7 Branch PrediCtionoooiieuuiiiiiiiie ettt e et e e e aee 28

3.3 EXECULION PIPEIINE ovvuiiiiiiii ettt e e e e et e e e et e e e eaeas 29

3.4 Data MEMOIY SYSIEIM . .ciiiiiiieiieiiii ettt e et e et e et s e e e e et e e e e e tb s e e e e aba e e e eeba s eeeennnan 30
341 L1 Data CaChe ... iiiiiiiii i 31

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 1

SiFive E76-MC Core Complex Manual 21G1.01.00

3.5
3.6
3.7
3.8

3.9

3.10

3.4.2 Cache Maintenance OPEratiONS..........vvveuuieiiuiieiiiee e ee e e 31
3.4.3 Ll Data Cache CONEIENCYcciieruiiiiiiiiiii ettt e eees 31
3.4.4 Coherence With an L2 Cachecouuiiiiiiiiii e 31
3.45 Data LoCal StOre (DLS) ...ccuuuuiiiiiiiiiie it e et e et e et e e e et e eenaa e eee 32
L TS B 1@ U PPPPRT 32
ALOMIC MEMOTY OPEIAIONS.....iiiitiieiiiiti e e et e e et e et e e e e et e e e e eebr e e e eera e e e eeeaans 32
Floating-Point UNit (FPU)cuuuiiiiiiiiii ettt e e e e e e e e aaa s 33
Physical Memory Protection (PMP)........oucuuuiiiiiiiiin et 33
3.8.1 PMP Functional DeSCIIPIONccuuuuiiiiiiiiiee ittt e e eeaa e aeeees 33
3.8.2 PMP REQION LOCKING ..uuiiiittiieiieiiies e e e et e e ettt e e et s e e e e et eaeeeen e e e eeenaneeaeee 34
3.8.3 PMP REQISIEIS ..uuiiiiiiiieei ettt e ettt ettt e e e et s e e e et e e e e e bt a e e e e e e e e eeba e aaae 34
3.8.4 PMP and PMA ..o 36
3.8.5 PMP Programming OVEIVIEWceeeeuuuueereiriieeietiianeeeeeiiseeeeeniseeseennaeeaeenns 36
3.8.6 PMP ANnd PagiNg ..cccuvuueiiiiiiieiieiiiie e e et e ettt s e e et e e a e e e e aaee 38
3.8.7 PMP LIMItAONS ..eiieiiiieei ittt ettt e et e e e et e e e eeb s e e e eeba s e aeees 38
3.8.8 Behavior for Regions without PMP Protectionoceevvuiiiiiiiiiinieiieiineeeeeenennn 39
3.8.9 Cache Flush Behavior on PMP Protected RegioN.........ccuuuiieieiiiiieieeiiineeeeeiinnnnn 39
Hardware Performance MONITOT...........viieiiiiie ettt e 39
3.9.1 Performance Monitoring Counters Reset Behaviorc.oooeviiiiiiiiiiiiinieennnnnn. 39
3.9.2 Fixed-Function Performance Monitoring COUNLErSvveeuieiiiieeiiieeeieeeeines 39
3.9.3 Event-Programmable Performance Monitoring CoOUNters..........ccceeeevveeeieeennnnnns 40
3.9.4 EVENt SeleCtOr REGISIEIS. .. ccuu ittt et 40
3.9.5 Event Selector ENCOUINGS «..cvuuiieiiiiii ettt e e 40
3.9.6 Counter-Enable ReQISIEISoiiuiiieeee e 42
L2 Performance MONITOLuieueieii et e e e et e e e e e e e e s e eereeeeneees 42
3.10.1 Control POrt REGISIEr MAPuieeiiieiieeie ettt e eaes 43
3.10.2 L2PM EVENt CONIOL....iiiiiiiiii ettt e e e et e e eees 43
3.10.3 EVveNt SeleCtOr REGISEIS ...cuuu ittt e e e e e 45
3.10.4 Event Selector ENCOINGS ...uuieeuiiiiiieiiee ettt e e e e e e e 45
3.10.5 Setting up the pmclientmask REGISIErccuuiiiiiiiiiiiiiiiiii e 49
3.10.6 Programming the L2pmevent regiStersc.oviiiuiieieiieiiieeeee e 49
04 £ P T USPPTTT 50

0 5 A (031 =0 AP TRRUPPPTTRRRPPRRTN 50

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 2

SiFive E76-MC Core Complex Manual 21G1.01.00

3112 MEIMOIY POI ittt e e et e e e e e e e e ennas 51
3.11.3 PeriPheral POrottt e 51

I O S 1 V1 (= 00 I o] PSPPI PPT 51

4 Physical Memory Attributes and Memory Mapcc.ccccceoeeeinnn, 52
4.1 Physical Memory AtrbULES OVEIVIEWccvuiiiieiiiiieeee et 52
N Y 1= 100 1o A 1V T o PP 53
5 Programmer’s Model..................cocoooi 55
5.1 Base INSIUCLION FOIMALScuuiiitieiiiee ettt e e e et e e e e e ea e e e e enes 55
5.2 | Extension: Standard Integer INSrUCLIONSc.uiiiiiiiiiiiieei e 56
5.2.1 R-Type (Register-Based) Integer INStrUCtiONScevuviiiiiieiiiieeiieeeee e, 57
5.2.2 I-Type INteger INSrUCHONSuuiiii e 58
5.2.3 I-Type Load INSIIUCLIONS ... cevtiiiiiie ettt e e e 59
5.2.4 S-Type Store INSIrUCIONS .. .uuuiiiiiitiieieeite e e et e e et e e et e e e eaen e e e eaba e aeeee 60
5.2.5 UNCONItIoNal JUMPS ..uuiiiiiiiieieeiiie ettt e e e e et e e eeaa e aeees 61
5.2.6 Conditional BranChES.......c.uuuiiiiiiiiieiieiiis ettt e e et e e eeai e eee 62
5.2.7 Upper-Immediate INStrUCHIONSviiiiiiiiieiieiiis et 63
5.2.8 Memory Ordering OPErationsoeveeuuuuieereeuireeeeeiianeereeii e eeeenianeeeeesnaeeaeeees 63
5.2.9 Environment Call and Breakpointsooeeuieiiiiiiieiieeiieeei e 64
5.2.10 NOP INSIUCHON ...cicttiieee ettt e ettt e et e e e e et s e e e eeb s e e e eenaneaaee 64

5.3 M Extension: Multiplication OpPerationS...........cceuuvieriiiieiieei e 64
5.3.1 DiViSION OPEIALIONS ...vuuiiiirtinieaieitiaeeeeittseeeeetisaeeeeata e erearaseaeeesnaeaeesnnaaaaees 65

5.4 A EXtension: AtOMIC OPEIratiONSc.uveeruiiiei e it e et e e e e e et e e e e ean e eaaeeenns 65
5.4.1 Atomic Load-Reserve and Store-Conditional INStructionsccvveviviiennnnnnn. 65
5.4.2 Atomic Memory Operations (AMOS)viiieuuuiiereiiiinee et e et eeeeri e aeeeenas 66

5.5 F Extension: Single-Precision Floating-Point INStructions...........c.ccceeiviiiiniiiiineeciieeeennn. 67
5.5.1 Floating-Point Control and Status RegISIErS.........ovveviiiiiiieiiieeee e 67
5.5.2 ROUNAING MOOESccuiuiiiiiiiiiiie ettt e ettt e et e e e et s e e e ea s e e e eeba e e aaees 68
5.5.3 Single-Precision Floating-Point Load and Store Instructions.............c.ccccevevvinnnnns 68
5.5.4 Single-Precision Floating-Point Computational INStructionsc.ccovvevvvevnnennn. 69
5.5.5 Single-Precision Floating-Point Conversion and Move Instructions..................... 69
5.5.6 Single-Precision Floating-Point Compare INStrucCtionsccovevvvvinieiniiiniiennennn. 71

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 3

SiFive E76-MC Core Complex Manual 21G1.01.00

5.6 C Extension: Compressed INSrUCHIONSuuiiiiiiiiii e e e 73
5.6.1 Compressed 16-bit INStruction FOIMALSc..uiiiiiiiiiiieeiiiiie e eeeeans 73
5.6.2 Stack-Pointed-Based Loads and StOresocceuriiiiiiiiiniiniiiii e, 74
5.6.3 Register-Based Loads and StOreS.........ccuveiiuiiiiiiiiieiiieciee e eennns 75
5.6.4 Control Transfer INSIIUCIONS.i i 76
5.6.5 Integer Computational INStrUCHIONSccuuiiiiiiiiiiiiei e 77

5.7 B Extension: Bit Manipulation INStrUCtIONSccuuiiiiiiiiiiieeieei e 80
5.7.1 Basic Bit Manipulation INSrUCHONSuiiiiieiiiieeeiiire et eei e e eeeeas 80
5.7.2 Bit Permutation INStrUCHIONS.........uiiieiiiiiee e 81
5.7.3 Address Calculation INStrUCHONSc.uiieriieiiii e 81
5.7.4 Bit Manupulation PSeUdOINSIUCHIONSiieuuiiiiieiieeei e 81

5.8 Zicsr Extension: Control and Status Register INStructionsccceeveeieiiiiiiniiiiiinneeens 82
5.8.1 Control and Status REQISIEIScuuuiiiiiiiiieeieiiiii et e et e e e eeean e e eeees 83
5.8.2 DEfINEA CSRS ..uuuiiiiiiiii ettt ettt e et e e e e e e e e e et e e e eeba e aaae 83
5.8.3 CSR ACCESS OFUEING ... eitetuuieiieiiiieeeteitas e et eeti e e aeett s e e eeaaa s e aeestaeeaensanaaaenns 86
5.8.4 SiFive RISC-V Implementation Version ReQIStErS.........covvveiiiiiiiiieiiiieeiineeeies 87
B5.8.5 CUSIOM CSRS c.uuuiiiiiiii ettt ettt e e ettt e e et e e e e e tba s e e e e et e e e e enbaneaaee 88

5.9 Base Counters and TIMEISccuuuuieiieuiuieeieiiineeeeeiiaeeeeeti e e reeri e aeesssaaseesna e eeesenns 88
5.9.1 TiMEIr REGISIET .uuiiiiiiiii ettt e et e e e et s e e e e et e e e eeba e aaees 90
5.9.2 TIMEE APl .ottt e e e aene 90

5.10 Privileged INSIIUCHIONSieeeiiieiieeit et e e e e e e e e e e e ea e eeen 91
5.10.1 Machine-Mode Privileged INSrUCIONSc.uviiiiiiiiieei e 91

5.11 ABI - Register File Usage and Calling CONVENTIONSoveveivviieeieiiiiineeeeiineeeeeeiieee 92
5.11.1 RISC-V ASSEMDIY .ccitiiiiiiiiiiie ettt ettt e e et e e e e et e e e eaa e aaee 94
5.11.2 Assembler to Maching COOE........cc.uuviiiiiiiiiieii e 94
5.11.3 Calling a Function (Calling CONVENTION)cuuuiiiieiiiieeietiieeeeeiiie e e eeiin e eeenenns 96

5.12 Memory Ordering - FENCE INSTIUCHIONSoiiiiiiiiiiiiiiiiineeceeiine et 99

ST T =T To | o PP TUPPPTTRPPPPN 100

B.14 LINKET FlE ettt et e et e ettt r e e aaee 101
5.14.1 LinKer File SYMDBOIScciiuieiiiiieiii et e e 102

5.15 RISC-V COMPIIET FIAGS «tvuuiiiiiitiiieiiiiiie e ee ettt sttt e e et e e e et e e e e esaneeaeeee 103
5.15.1 arch, abi, An0 MEUNE.....uiiuiiiiii et e r et e e e e e b eas 103

5.16 COMPIlAtionN PrOCESS ...ccvvuuieiiitiie it e ettt e ettt e et e e e et e e e e ebb s e e e een e eaaeees 107

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 4

SiFive E76-MC Core Complex Manual 21G1.01.00

5.17 Large Code Model WOTIKaroUNdSveeeuuiieiieiiiieeiiee e et eee e ean e 107
5.17.1 Workaround EXample #1ccouuuiiiiiiiiiiieiieiiie et 108
5.17.2 Workaround EXample #2ccuuuiiiiiiiiii et 108

5.18 PIpeliNg HAZAIUSt iiiiiii ittt e et e e et e e e e e e aaee 109
5.18.1 Read-After-Writ€ Hazardsoveiiiuuiiiiiieiiiis et 109
5.18.2 Write-After-Write Hazards...........uiviiiiiiiiieiieiiis ettt 110

5.19 REAUING C SRS .. iiiiuiiii it ittt e ettt e et e e e ettt s e e e ee b s e e e e et s e eaestaneeeeeanaeeaaees 110

6 Custom Instructions and CSRS.................ccocooii, 112

G700 R od oy I £ I O PP PP PPPRR 112

6.2 CDISCARD.D.LL iiiieiiiiiiieiitrie e e e e et et e e s e e e e et e e ee e e n e n e e e e e e e et e e e e nr e e e e 112

8.3 CEASE .iiiiiieitiiit et e ettt e et et et et e e e e e e e nees 113

B.4 PAUSE ...iiiiieeeiiit et ettt e et et e e e et e e e e e e nees 113

6.5 Branch Prediction MOe CSR........ccocuiuiiiiiieii et e e e eer e e eene e e eeneas 113
6.5.1 Branch-Direction PrediCtion oo eeeeans 114

6.6 SiFive Feature DiSable CSRcciiiiiiiiiiiiiiai e a e e eaeeees 114

6.7 Other CUSLOM INSIIUCHIONScceeitiieiieiei e e eei e e e e e e ee e e e e e e e eerar e e e eenna e e eeennas 115

7 Interrupts and EXCEPLiIONS................ccoooiviiiiiiicee e 116

A% R 11 =T g 0] o] A O] g [o1=T o £ PPPTURTTRPRI 116

7.2 EXCEPLON CONCEPLS ..uieieeruieeeeeriiaeeeettaseeeest s e e eeent s e aesessaaeeeesnnaeaeessnsaaasennnnsaeeenns 116

S T L v 1o J @0 4 o1 o) PP SURTTTRPTRI 118

7.4 Interrupt BIOCK DI@gram coieeriieeieeiee e ee et eeeee e e e et e e e ee s e e e e ene s e e e ennnaeeeeens 119

S o ot |l [| (=T £ (1] o] £ PPN 120

S T 1) (= (U0 @ =Y 1 i T o 121
7.6.1 INterrupt ENtry @and EXitcccuviieiiiiiii e ee e e e r e e e 121

7.7 Interrupt Control and Status REQISIEISccuuiiiiiiiiii e e 121
7.7.1 Machine Status RegiSter (MSTALtUS)....ccvrruureerrrrrirerreriiieereeireerrannneeereeneees 122
7.7.2 Machine Trap VECIOI (MEVEC) .. .iiieuruieeeeeiiiieeeeeiiis e e e e et e e e eeenas e e e earnn e e e eeana e 122
7.7.3 Machine Interrupt ENable (Mi€).......coieeeeeruiiiiiiiiinieeeiiin e e eeee e e et e e e 123
7.7.4 Machine Interrupt Pending (MAP) ..uuueeeeuieeeiieeiiiee e ee e e et e e e e e e ea e eeaeeens 124
7.7.5 Maching CauUSE (MCAUSE) v.uueeerureeetnieeiieeriteeitteeesteeestaeesstaeeetneeetneeeateaesnaaes 124
7.7.6 Minimum Interrupt Configurationccoveiiiiieiiiiiei e 125

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 5

SiFive E76-MC Core Complex Manual 21G1.01.00

7.8 INTEITUPE PrIOMIES 1ovvtuiiiiiit e e ettt e et e et e et e e e et s e e e e et s e e e e tra e e e eeaa e eaeees 126

7.9 INTEITUPE LAIENCY . eettiii ittt ettt e et e e e et e e e e e et s e e e e et e e e eeaaa e eaaees 126
7.10 NON-MaSKabIe INTEITUPE «...uiiietii ettt e et e e et e e e e ebb e e e e eeaneeaeeee 126
7.00.1 HandIer AQGrESSESuuuiiiiiiiiieei et e ettt e et e et e e e et e e e et e e e e eaa s 126

7.10.2 RNMICSRS ..ttt ettt e et e e e 127

7.10.3 MNRET INSIUCHON eevuiiiiiiiiis ettt e e et e e e et e e e eaa s 127

7.00.4 RNMI OPEIAtION ..oeeevveieeieiiii e ettt e e ettt e et e ettt e e e e et s e e e eeb s e e e eeaa e aas 127

8 Core-Local Interruptor (CLINT)..........cccoooiviiiiieeeccee e, 129
8.1 CLINT Priorities and Pre@mplionoveeeeuueieiieiiine et eeeii e e et eeeen e aeesenns 129

8.2 CLINT VECIOI TADIE ...uiiiiiiti ettt ettt ettt e et e e e et s e e e e tb s e e e eeaaneeaeee 130

8.3 CLINT INEITUPE SOUMCES .evvuueieitiiieeteette e e e ettt e e s ettt s e e e et e e e eeba s e e aeebb e e e eesneeaeeees 132

8.4 CLINT INterrupt AttriDULEttt e ee e eeens 132

8.5 CLINT MEMOKIY MDD ... itietuueeteetuiaaeeeeitaa e e ettt s e e eeebt s e e e e aes s e e eesaa e e eeesbaaeeseebanaeeaenes 133

8.6 REQISIEr DESCHPIIONS ...eieeveieeieitiie e ettt e ettt e ettt s e e e e et e e e e et e e e aebtaa s e e eeebaeeeaenes 133
8.6.1 MSIP REOISIEI...uuiiieiiiie et ettt e ettt ettt e ettt e e et e e e e et e e e e e rb e e e eeba s 133

8.6.2 TIMEI REGISIEIS ... iiiiiiiii ettt e e et e e e e erb e e e e e 134

9 Platform-Level Interrupt Controller (PLIC) ..., 135
9.1 MEMOTY M@ cetuniiieitie ettt e ettt e e e ettt e e e et e e e e ettt s e e e e et e e e e e bt e e e e eeb e e e e eabnaaaees 136

9.2 INTEITUPE SOUICTES ..eevtuieiiiiti e eeeetia e e ee ettt e e ettt s e e e ettt s e e e eab s e e eeaba s e aaesbaaseeessanseeaeees 138

1S R B 101 (Y (U] o A o 10 1 =S 139

9.4 Interrupt Pending BifS........ui it ee 139

9.5 INtErrUPL ENADIES ...covviiiiiiii ettt e a et e e e aee 140

9.6 Priority TRreSNOIASuiiie et 141

9.7 INtErrupt Claim PrOCESSuiiitiieeiii ettt e et e e e e e e e e et e e e e enn s 142

9.8 INterrupt COMPIELION.....iiiiie et e e et e e e et e e e e e ab e e e eeba s e aaeee 142

9.9 Example PLIC INterrupt HANAIErc.uuiiiiieiieee et 142

10 TileLinK Error DEVICE ... 144
11 Level 2 Cache Controller ... 145
11.1 Level 2 Cache Controller OVEIVIEWuuiverueiiieeieie et ettt e e 145

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 6

SiFive E76-MC Core Complex Manual 21G1.01.00

11.2 FUNCLONAl DESCIIPLION ..eetieeetee et e ettt e e et e e e e e e e e e e e e e eaeeeenneas 145
11.2.1 Way Enable and the L2 Loosely-Integrated Memory (L2 LIM)cceuveennnneene. 146
11.2.2 Way Masking and LOCKINGccuuuiiirniiiiieeiiie e 147
11.2.3 L2 ZEI0 DBVICE ...uuuiiieiiiiieeeetie ettt ettt e et e et e e et e e e et e e e e aaa s 149
11.2.4 L2 FeatureS ACCESS SUMMAIY ...ccuuiiirieiiteeieieeeeiaeeetaeeeneeeeneeseneeeaaeaennnns 151
11,25 L2 PrefelCher ..o et 151
2 T O 1 1= =T o To PP PP TUPPRTT 153

11,3 MEMOIY IMBP cetuiiiiiiieee et e e ettt e e ettt e e et et e e e e e tb e e e e e ta e e e e etbaaeeeeeba s eaeeanaaeaaees 153

114 ReQiSter DESCHIPLONS ...cetuieei ittt ettt et e e e e et e et e et e e e e e e e e e e ebneeenanas 155
11.4.1 Cache Configuration Register (CONTLig)oveerririiriiiiiiieeiieeei e eeeis 155
11.4.2 Way Enable Register (WayENable) ...c..oveeuuiiiiiiiiiiieeeiee e 155
11.4.3 Cache Flush Register (FIUSN32) ...uuiiiiiiiiiieeieeiii e eet e e een e 156
11.4.4 Way Mask RegiSters (WayMasK™) ... o eueeururiaeierrnaeeeeeiaeeeeernaseeeenr e e eeenn s 156
11.4.5 L2 Prefetch Control REQISLErSc.uuuiiiieiiiieeieei e e e ee s 158

11.5 Procedure to FIush the L2 CACheiiiiiiiiiii et ee e 159

12 Power Management..............ccoooooic s 161

121 POWEEN MOOES ...oiiieiiiieeeiitie e e et e e e e et s e e e e ees s e e eesa e e e eernn e e aeenta s e e eeennnseeeennnnaaaanns 161

I U [1Y oo [PRI 161

12.3 WFI ClOCK Gate MOEuuiiieeieieeeeei e e ettt e e e e e e e e e e s e e e enr s e e e ennn e eeeenes 161
12.3.1 W WAKE UP ettt ettt e et e et e e e e e e e e e e e ennas 161

12.4 CEASE Instruction for POWEr DOWNcoieeiiiiiiieiiie e e e e eee e e eees e e een e e eeees 162

12.5 HAIOWAre RESEL....ceuuiiiiiiiiiieei et eee et e e e e e e e eer e e e ee s e e e e ern s e e eernnaeaeennnaaaeens 162

12.6 E@rly BOOt FIOW. . ccceeuiiieieii ettt e e et e e e e e e e e enn e e e eern e e e eennnaeaaees 163

12.7 Interrupt State During Early BOOLuuiiiiiriiiiieeiiii e e e e eer e e ee e e eees 163

12.8 Other Boot Time CONSIAEIAtIONScccuvuuieieerieeeeenie e e e eer e e reeni e e e eesn e eeeennaaeaeees 164

12.9 POWE-DOWN FIOWuuiiiiiii et eeee e e e et eeeet e e e ee e e e e e enn s e e s eesn e e s eennnaaaaenns 164

I3 DebUQ ... 167

13,1 DeBUG MOAUIEeeeieeee ettt e e e e e e e e e e e eetn e e e e enn s e e eennnaaaeees 167

13.2 Trace and DeDUQ REGISIEIS. .. .ccuuuiiiieiiiieeieeii e e eei e e e e e e ert e e e eer e e s eennaaaaees 170
13.2.1 Debug Control and Status RegiSter (ACSI) ...uueuruieereeriieeeeeriare e eer e e eeennes 172
13.2.2 DEDUG PC (APC) cvrvrreereeeeeeeeeeeeeeeeeeeeeeeee e eeee e eeeeeeesee e eee e e eee e eee e eneeeen e, 172

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 7

SiFive E76-MC Core Complex Manual 21G1.01.00

13.2.3 Debug ScratCh (dSCratCh)iiiiieiiiiiiieiiii e 172
13.2.4 Trace and Debug Select Register (£SE1eCT) .icuuuriiiiirruiiieiiriiiieeeeiiie e eeeeinee 173
13.2.5 Trace and Debug Data Registers (tdatal-3) ...cccueeeeerunreereernnniereernneeeeennnnns 173
13.3 BreakpPOiNntSieeieeei et as 174
13.3.1 Breakpoint Match Control Register (MCONtrol)......cccuuiieeenieeerreeeiieeenieeennees 174
13.3.2 Breakpoint Match Address Register (Maddress)ceuuureereerrnieereerireeeeeenenn 176
13.3.3 Breakpoint EXECULIONcciiviiiieeeeiii s e e et s e e e e e e e e e e s et e e e e et e e e e ena s 176
13.3.4 Sharing Breakpoints Between Debug and Machine Modecccevvvieeens 177

e 20 1= Yo 10 o 1Y 1=T0 0T TV Y - o P 177
13.4.1 Debug RAM and Program Buffer (0X300—0X3FF)cvverrrrruinereeriniieerennnnnens 177
13.4.2 Debug ROM (BX800—OXFFF) ..uiieteerueeerereunseereeennseeeresnnseeerennneeeensnneesresnnnaees 178
13.4.3 Debug Flags (0x100—0x110, OX400—0XT7FF) ..uuitiitieeiiieeeeueeeeineeeeieeesnaeeesnaans 178
13.4.4 SAfE AQUrESS .. .ottt e e e 178
13.5 Debug Module INtErfaCE.........iieii e e e e e e 178
13.5.1 Debug Module Status Register (dmStatus)c.cceuuveeerireiiiieeiiieereiireeaieeeeaneens 179
13.5.2 Debug Module Control Register (dmcontrol)cccccceuuieeiiuieeeiiereineeesineeenneans 180
13.5.3 Hart Info Regdister (Nartinfo)cceeeeeiiiiiiieeiiiiii e e e et e s 181
13.5.4 Hart Array Window Register (NawindOow)ceuvuureereerininieerinneeeeeiieeeeeennnnnns 182
13.5.5 Abstract Control and Status Register (absStractcs) .cceveeieerriiirrieiiiireereeiinnn 183
13.5.6 Abstract Command Register (COMMANG)cceuvuuieerieriiieeeeiiaeeeeeei e eeennnnns 184
13.5.7 Abstract Command Autoexec Register (abstractauto).....cccoeeeerurerreerinnnnees 184
13.5.8 Debug Module Control and Status 2 Register (dmCS2)ccuuveereernnirereennnnnnn 185
13.5.9 ADSIract COMMEANASvuuiiieeeeiiieeiiiiit e e e e e e e et e e e e e e e e eeebbaa e e e eeas 185
13.5.10 Multi-core SYNChroNIZationoieeieuiuiieee e e e e e e e 187
13.5.11 SYSLEM BUS ACCESS .uvuuuieiiriiieeeeiiiieeeeeti s e eeeet s e eseaeaseeeeetaeeeeetan e eeennnnes 187
13.6 Debug Module Operational SEQUENCESuiieeiiruiiieeeeiiiieeeeeiieeeeeeaiareeeeeenaeeeeeens 188
13.6.1 ENntering DEDUG MOOEccovveuieiieeiiii e e e e e e e e e e s 188
13.6.2 EXiting DebUG MOTEieieiiiii et 188

A SiFive Core Complex Configuration Options................c.c..cc......... 189
YN 7= =T TP P PP PPPTPTRRT 189
B SiFive RISC-V Implementation Registers................ccccccoeoevveereennnee. 193

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 8

SiFive E76-MC Core Complex Manual 21G1.01.00

B.1 Machine Architecture ID Register (Marchid)c.uceveeieeriniiereeiiineeeeeiin e e eeiineeeeenens 193
B.2 Machine Implementation ID Register (Mimpid)ovveiieeriiiirieiiiineeeeiiieee e eeeeeens 193
C Floating-Point Unit Instruction Timingccccocooooviiviniinnnne, 194
C.1 E7 Floating-Point INStruCtion TiMiNguveeeuieernieeeieeeeiee e e eereeeen e eeneeenneees 194
REFEIENCES ... 196

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 9

SiFive E76-MC Core Complex Manual 21G1.01.00

Tables

Table 1 E76-MC Core CompleX FEAUre Set.......cicuuiieriiieiieei e 18
Table 2 RISC-V Specification COMPIIANCEccuuiiiiiieeii e 21
Table 3 AbDreviations and TEIMIS......ouiiiuiii it e e e e e rb e e eeeeans 23
TADIE@ 4 E7 FEAUINE SOL....ciiiiiiiiiiiiiiie ettt ettt e ettt e e e e et e e e e et s e e e eeabn e e e eeeba s eaaenes 25
Table 5 Executable Memory Regions for the E76-MC Core COMPIEXccvvveiiinieiiinieeiiieeeiinas 26
Table 6 E7 INStrUCHON LATENCY ...evvvuniiiiiiiii ittt e et e e et e e e e et e e e e aba s e e aeennas 30
Table 7 pmpXcfg Bitfield DeSCHPLON ...c..uuiiii e e e e eaa s 35
Table 8 pmpaddrX Encoding Examples for ASNAPOTccuuiiiiiiii et 36
Table 9 MhpMEVENt REGISIE ... i e e e e e e ennes 41
Table 10 L2PM PArtitiOncccuuuiiiiiiiiieei et ee et e e e et e e e et e e e eer s e e e e eata e e e eennaaaaeenes 43
Table 11 L2PM EVENE CONIOL....ccieteiiieiiiiii ettt e e e e e e et e e e eeea e e e eera s e aaeennas 43
Table 12 L2 Performance MONITOr COUNTEIS.ieruiieeieieieeee e e e e e e e e e e enn s 44
Table 13 L2 Performance Monitor Counters, 32-Bit ACCESS....cuiiuiiiiriiiiiieiiie e eeaeaeneens 45
Table 14 L2pmeVent REGISIETu et r e e e e e enaas 47
Table 15 Master IDs in the L2 Cache CONtrollercoooveeiiiiiiieiiie e ene s 49
Table 16 Physical Memory Attributes for External REQIONS..........cooviiieiiiiiiiiieeeee e 53
Table 17 Physical Memory Attributes for Internal RegioNnS..........oooeviiveiiiiieiiieee e 53
Table 18 E76-MC Core Complex Memory Map. Physical Memory Attributes: R—Read, W—-Write,

X—Execute, I-Instruction Cacheable, D—Data Cacheable, A—AIOMICS.........c.covveuiieirniieiineeeieeeennn. 54
Table 19 Base INStruCtion FOMMALSccuvuiiiiiiiieeiee e e e e e e e e e e e e e e na e e e eenenns 55
Table 20 R-Type INteger INSITUCHIONScutuieiieeeeeeeerie e e e et e e eer e e e e e s e e e eenn e e s eennn e eeeenenns 57
Table 21 R-Type Integer INStruction DeSCIPLIONccuvuuieiieiiieeieei e e e e e e s 57
Table 22 I-Type INteger INSIUCHONSccuuuiiiieii e e e e e e e e e e e e eenenns 58
Table 23 |-Type Integer INStruction DESCIIPLIONcuvuuiiiieeiiieeiiei e ee e s 59
Table 24 I-Type Load INSLIUCHONSoiieiiii ittt e e e e e e e e e e e e e e nnn e e e eennnns 60
Table 25 |-Type Load INStruction DESCHPLIONccceereieereeri e e e e e e e e ee e e ee e e e eneanns 60
Table 26 S-Type StOre INSIIUCHONScvcerruieiieeti e et e e e et e e ee e e e ee e e e e ern e e e eernn e eaeennnns 61
Table 27 S-Type Store INStruction DESCIPLIONccceevuieeieeiiieeeeer e e eerr e e eerr e e ee e e eenea s 61
Table 28 J-Type INStrucCtion DESCIHIPLIONieieeeeieeeeeie e e eeette e e e eer e e e ee e e eeer e e s eern e e eennenns 62

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 10

SiFive E76-MC Core Complex Manual 21G1.01.00

Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61

B-TYPE INSIIUCHIONS ...t eeittie ettt e e et e e e et e e e e et e e e e eaeneeeaes 62
B-Type INStruction DESCIIPLONvuuiiiiiiiii ettt e e e e et e e e e e eeees 62
RISC-V Base Instruction to Assembly Pseudoinstruction Exampleccccccoevveenen. 63
Multiplication Operation DESCIPLIONiierriiiiieieie e eees 64
Division Operation DESCIPLIONceuu it eiei ettt e et e et e e e eea e e een e eeeaneees 65
Atomic Load-Reserve and Store-Conditional Instruction Description................cceeeven. 66
Atomic Memory Operation DESCHPHON........ceuuiiiiiee e e e 67
Accrued EXCEPLION FIagScvuu it 67
Floating-Point ROUNAING MOOESciiuvuiiiiiiiiii ettt e eb e eeees 68
Single-Precision FP Load and Store Instructions Descriptionccovevvevvnieeeeinnnnnn. 68
Single-Precision FP Computational Instructions Descriptionc.cccoeveveviievinneeennnn. 69
Single-Precision FP Conversion Instructions DesCriptionccevuvvirniieineeeneeeennn. 70
Single-Precision FP to FP Sign-Injection Instructions Description...........cccvvvevieniiennnns 70
RISC-V Base Instruction to Assembly Pseudoinstruction Examplecccccoeevieeennnn. 71
Single-Precision FP Move Instructions DeSCrPLioNcc.uvvieriiiieiineiiieeeieeeeeeeeenee 71
Single-Precision FP Compare Instructions DeSCriptioncvvuvviiiiiniiniiiiiiinneiineannas 72
Single-Precision FP Classify Instruction DesCrptionccovevieiiiiiiiiinieiiieiieeineenns 72
Floating-Point NUMDEr ClaSSES.ccuuiiiiiiiiei ettt et e e e ees 73
Stack-Pointed-Based Load Instruction DeSCHPLON.........ceuuvieriieiiiieeeieeeie e 74
Stack-Pointed-Based Store Instruction DeSCriptionc..ovveviiiiiiniiiiieeeieeee e, 75
Register-Based Load InStruction DeSCIPLIONvveuuniieiiiiiiieeei e 75
Register-Based Store INStruction DeSCHPLONccuuviiiiiiiiiieieee e 76
Unconditional Jump INStruction DeSCHPLIONuviivuiiiiiieie e 76
Unconditional Control Transfer Instruction DeSCriptionccovveriirieiineeeineeeieeeennn. 76
Conditional Control Transfer Instruction DeSCrPLioNc.uvvvevieiiiieeeie e, 77
Integer Constant-Generation Instruction DeSCriptioNncvvveeiiveiiiieeineeeieeeeieeenenn 77
Integer Register-Immediate Operation DeSCriPtioN..........vveveiiiiiieiiireeeeeei e 78
Integer Register-Immediate Operation Description (CON'L).......c.ovvvevieirinieerineieieeeennn. 78
Integer Register-Immediate Operation Description (CON'L).......c.cvvverveiriiieeineeeieeeennn. 78
Integer Register-Immediate Operation Description (CON'L).......c.ovvveeveirinieeiineeeieeeennn. 78
Integer Register-Immediate Operation Description (CON'L).......c.ovvveeveirinieeineeeieeeennn. 79
Integer Register-Register Operation DeSCHPLONccvvviiiiiiiiiie e 79
Integer Register-Register Operation Description (CON™)ovvvvieiniiiiiiiniii e 79

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 11

SiFive E76-MC Core Complex Manual 21G1.01.00

Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
Table 83
Table 84
Table 85
Table 86
Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 94
Table 95

Count Leading/Trailing Zeroes Instructions DesCriptioncoccvviveiiiieeiiiieeiiiieenis 80
Count Bits Set INStructions DEeSCHPIONuiiiiiiiiiieieiiii et 80
Logic-With-Negate INstructions DeSCHPIONccuvuiiiiiiiiiiie e 80
Comparison INStructions DESCIPLIONvevuiieiieiiiee e e 81
SIGN-EXIEN INSTIUCHIONS ...evuieiiie et e e e e e e e e e e eees 81
Bit Permutation INStructions DEeSCHPLION........uiietiieiiiee e e eees 81
Address Calculation INStructions DeSCHPLIONvveviiiiiiieeiiieee e 81
Bit Manipulation Pseudoinstructions DeSCrpioNcuuuiiiiiiiiiiiieeiiie et eeeienn 82
Control and Status Register Instruction DeSCHPLONoevevvuiieiiiiiiiiieeeeiiin e 82
CSR REAAS @NA WIES ...uuiiieiii ettt ettt e e et e e e e e ab e e e e eeenns 83
USEI MOOE CSRS ...ciiiiiiiiiiiiie ettt e et e ettt e ettt e e et et s e e e e eta e e e e etaa e e aeeseaaeaaes 84
MaAChINE MOOE CSRS .. .iiiiiiii ittt e et e et e e e et e e e eab e e e e eeba e aaee 85
DebUg MOAE REGISIEIS . .eevuuiiiieiiiii et e ettt e et e et e e et e e e e e tb e e e e eebaneaaee 86
Core Generator ENcoding of MarChid.......u.eviiiiiiiiiiiiiiiiiee e 87
Generator Release ENcoding Of Mimpid........ocveeuenieeeiiinieeeeinee et e e e 88
Timer and Counter Pseudoinstruction DesCription...........ccuuiiiiieiiiniieeeiiiie e 89
Timer and COUNTEr CSRS ...ccuuuiiiiiiiie e et e et e e e e e e e et e e e era e e eeraa s 90
RISC-V REQISIEIS «..eetuiiieiieitie e ettt e ettt e e e et e e et et s e e e e et s e e e e ern e e s eessaeeaeerenaaaees 93
RISC-V Assembly and C EXamMPIESc.uiieiiiiieiieie e 94
SiFive Feature DiSable CSR ... e 115
SiFive Feature Disable CSR USAQE......uuiieruiieinieietieeeiiee e e eet e ee e ern e eenaeees 115
Ly Cot=T o] (1o I = 10T 1 PP 117
Summary of Exception and INterrupt CSRSc.uuiveiiiiieiiieeii e 118
Machine Status Register (Partial)veeieermiiieiieiire e 122
Machine Trap VeCtOr REGISIENiiiieiiii et e et e e e e e e e e e e ana e aaees 122
ENCOdiNG Of MEVEC . MODEuiiiieiiieeeeeiis e e e et e e et et e e e e et e e e e ertn e e e eeraan e e e eereaaaeees 123
Machine Interrupt Enable RegiSter i 124
Machine Interrupt Pending REQISTENiieriiii e 124
Maching CauSE REJISIENcuu et e e e e e e ennns 125
Mcause EXCEPON COUES......cuuuui ittt e e e e e e e e e re e e e eneas 125
RINIMI C SRS .ttt e e e e e e e e e e n e e e e e e e en e enenneen 127
E76-MC Core CompleX INtErrUPt IDSeiieeiiieeeeeie e eeeete e eeeis e e een e e eene e eeees 132
CLINT REGISIEI MAP ..eetieieeieii e eeeei et e e e e e e e e e ee s e e e e e rnn s e e eennaeeeeenes 133

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 12

SiFive E76-MC Core Complex Manual 21G1.01.00

Table 96

Table 97

Table 98

Table 99

Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113
Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124
Table 125
Table 126
Table 127
Table 128

PLIC MEMOIY IMBP .. cctuuietiiiiseeeeeite e e ettt s e e e e etts s e e ettt s e e e e ab s e e e e st e e e e esba e e e eeban e eeas 137
Mapping of global_interrupts Signal Bits to PLIC Interrupt IDc.coevvvuvevennnnnnn. 139
PLIC Interrupt Priority REGISTENoiieeiiiieieiiiii ettt e e 139
PLIC Interrupt Pending REGISTEr L.......ccuuiiiiieieiieeee e r e e e e 140
PLIC Interrupt Pending REQISTEr 4iiiuiiii e ee e 140
PLIC Interrupt Enable Register 1 for Hart 0 M-Modeccoovveviiiiiiiiieinieeieee, 141
PLIC Interrupt Enable Register 4 for Hart 0 M-Modeccoovieiiiiiiiiieinieceieeen, 141
PLIC Interrupt Priority Threshold RegiStercouuiiiiiiiiiiiiiiceeee e 141
PLIC Claim/Complete Register for Hart 0 M-Modecoveviiiiiiiiiiiiiec e, 142
L2 FeatureS ACCESS SUIMMMAIY ...ccuuuiierueietaeeeteeeanaeeetaeeetaseeeneeeenaeernseeenaaaeenaaes 151
Register offsets within the L2 Cache Controller Control Memory Map 154
Cache Configuration REGISTENveeuiiiiie e eees 155
Way ENabIe REGISTET ...ccuvuiiiiiiiii ettt e e e e e eea e 156
Way MaSK O REGISIEN ...t e e e e e e e e e e ena s 157
Master IDs in the L2 Cache CONtrollerccuviiiiiiiiii e 157
DASICCEIL REQISEN «.eevuiieeieiiie e e et e et e ettt e e et e e e e et e e e e eab e e e e eaba e eaeeees 158
AdditionalCtrl REGISIEI .euvuuiiiiiiiiieeiirie e e et e e et e e e e e e e eer e e e eere s e e eeennns 159
Debug Module Register Map Seen from the Debug Module Interface 168
Debug Module Memory Map from the Perspective of the Core.........cccccvevevevnnnnnn. 169
Debug Control and Status REGISTEIS.......c.uiiirieeeii e ee e e e 171
Debug Control and Status REGISTETcuuuiiiieiiiieeieei e e ee e eeneans 172
Trace and Debug Select ReQISIEr.........viiiiiiii et 173
Trace and Debug Data REQISIEN 1c.uiiiiiiiieiiieeei e 173
Trace and Debug Data Registers 2 and 3.........ccouuoiiiiiiiiiieiiiii e ee e 173
(e - Ra= T Y/ o1 PP 174
TDR CSRs When Used as Breakpointscceuuuiieereeiuiieereeiiieeeeeiiseesssennneeeeeens 174
Breakpoint Match Control REGISIENccuuuiiiieiii e ee e 175
NAPOT SiZ€ ENCOUING +..uueeeeerinieaeieniaaeeeesis e e eeesne s e eeees s e e eennn s e e eeesnaaeeeeennnnaeaeenes 176
Debug Module Interface SIGNalSooeveeieiieieiiii e eeeeans 179
Debug Module Status REGISIETuiiiiieiiiieieeii e e e 180
Debug Module Control REGISIENoiiieeiiieeeeeii e e eee e e e e e e e e eeeans 181
Hart INfO REGISIEN ...t e e e e e e e e e e e e e e e eeees 182
Abstract Control and Status REQISTENccuuuiiiieiiiiieeierr e e e e e e e e e eeees 183

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 13

SiFive E76-MC Core Complex Manual 21G1.01.00

Table 129
Table 130
Table 131
Table 132
Table 133
Table 134
Table 135
Table 136
Table 137

Abstract Command REGISTENciiuueiiiieii e e e 184
Abstract Command AUtOEXEC REGISIENuuuiiiiiiiiiieieiiir ettt eer e eeees 184
Debug Module Control and Status 2 REQISIENcoeveuvuiiieiiiiiie e 185
Debug ADSIract COMMANGSuiiieiiiieeieiire e ettt e et e e e et e e e et e e e eeba e eeeeenns 186
Abstract Command Example for 32-bit Block Wrteccovvvviiiiiiiiicii e 187
System Bus vs. Program Buffer CompariSonccvveueeeiiiniiiiiieeie e e e 188
Core Generator Encoding of marchid........occeeuuniiieeiiiinieieiiin e 193
Generator Release ENcoding Of MImpid......cccuuuuiieiieiiiiiiiiiiiiieeeeeiice e eeeianes 193
E7 Single-Precision FPU Instruction Latency and Repeat Ratescc..cccuveeenn. 195

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 14

SiFive E76-MC Core Complex Manual 21G1.01.00

Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29

E7 Series BIOCK DIagram.......cuuuuiiiieiiiieeeeeiiineeeeeii e e e e etis e e e eebi s e e eeeann s e s eesaaeeaeesenns 20
Example E7 BIOCK DIaQramooieeiuieeiieiiiie ettt e et e e e et eseeai e e e eeneans 29
RV32 pmpCTg0 REGISIEL «.evuuiiiii i e e e e e e e e e e e e e s 34
RV32 pmpCTgl REGISIEN «.evuiiiiiiieiii ettt e e e e e e e e s 34
RV32 pmPCTg2 REGISIEN ..vvviiiiiiiiiii et e e e e e e s 34
RV32 pmPCTg3 REGISIEN ..evuiiiiiiiiiii ettt e e e e e e eaan s 34
RV64 pmpXCTg DIIEIA ... oeeeeieiie e 35
RV32 pmpaddrX REGISIEI .. .ccveuti i eeieeiie eaa e e e eeaanns 36
PMP Example BIOCK Diagramccuuuiieiieuiiieeeeiieieeeeeiis e e e eeas e e e eeann e e e s eann e e e eeennnns 37
EVENt SEIECIOr FIIUS ...t e e e 40
EVENt SEIECIOr FIEIUS ...ttt e e e 45
o 1Y/ - 55
1Y/ 0= 56
LT 1/ o1 56
2T 1Y/ o1 56
LU Y T 56
B 1Y/ o= 56
ADD INStruCtion EXAMPIE.......uiieieiieieeeeiee e e e e e et e e e e e e e 57
ADDI INStruCtion EXAmMPIE......uiiiieiii et e e et e e e e e e e e 59
[YA g1 (T 1T o I Y= T T o - 60
SEOTE INSITUCTIONS ...ttt e et ettt e e e e e e e e e e re b e e e as 60
SW INSErUCHION EXAMPIE ..vuuieeeeiii e e e e et e e e e e e e e e e eeaa e eeeees 61
JAL INSTIUCHION. ..ttt oottt ettt e e et et e ettt b e e e e e e e e e eeeaebbe e e e e eaeaens 61
JALR INSTIUCTION ...ttt e ettt e e e e e e e e e e e re bt e e eeeas 61
BranCh INSIIUCHIONS ...ttt et e e e e e e e eeneeaaaanas 62
Upper-Immediate INSIIUCHIONSeieeieeeeeeeeiiseee et e e e e e e e e e eatsr e e e eaa e e e eeaneeeeeees 63
FENCE INSIIUCHONSiiieeee ettt ettt e e e e e e eeeeabb e e e e e e e e eeeennennaanas 63
NOP INSIIUCTIONS .ttt e e e ettt e ettt e e e e e e e e e e e eebbae e e e e e e e eeeeenenennnas 64
MuUltiplication OPEratiONScceevuuieeieeiireeeeeiiis e e e eei s e e e eet e e e e eaar e e e eeaaeeeeeanaaeeeees 64

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 15

SiFive E76-MC Core Complex Manual 21G1.01.00

Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62

DiVISION OPEIAIONS c..uuieiietieeeeeeiie e ettt e e et e et e e e e e e et s e e e eeta e e seeta s e e aeebaaeaaees 65
ALOMIC OPEIALIONS ..eevtiieieirti e ettt e e ettt e e et e e e et e e e e e et e e s e et e e e eetan s e e eeeraa s 65
ALOMIC MEMOTY OPEIAtIONS. . .uiiiiiiieeieeiiae et et e ettt e e e e e et e e e et e e eerea e eas 66
Floating-Point Control and Status RegiSIervieuiiiiiiieiee e 67
Single-Precision FP Load INStrUCIONcuuuiiiiiiiiiie e 68
Single-Precision FP Store INStruCtioN............viiiieiiiiiieiiii et 68
Single-Precision FP Computational INStruCtions...........ccccuiiiiiiiiiiiiiecii e, 69
Single-Precision FP Fused Computational INStructions...........covevevieiieiieeiinneeeennnnnn. 69
Single-Precision FP to Integer and Integer to FP Conversion Instructions 69
Single-Precision FP to FP Sign-Injection INStruCtionsccoccovviiviiiiiiiiiinieneeineeen, 70
Single-Precision FP MoVE INSIIUCHIONScuuuiiiiiieeiieeeii e eeees 71
Single-Precision FP Compare INSrUCLIONSvieeuiiiiiieiiineeiee e eee 71
Single-Precision FP Classify INSIIUCLIONccuuiieiiiiiiieiei e 72
CR FOIMAL - REGISTET ...ieeviiiieiieii e ettt ettt e e ettt e e ettt e e e e et s e e e e eeb e e e e eabaaeaeee 73
Cl Format - IMMEIALEuiiiiiiiiee ettt e e e e e e eaa e aeee 73
CSS Format - Stack-relative StOre........viiieiueiieiieiiie ettt e e eeeas 73
CIW Format - Wide IMMEIALEccevvuiieiiiiiii ettt e e e e eees 73
CL FOrMAL = LOAA. ... ittt et e e e e e et e e e e e e ean e eeaa e 74
CS FOMMIAL = SEOTE ..ttt e ettt e e et e e et e e e et e e ern e e ean e eenaas 74
CA Format - AFtNMELICceei e et e e e e e e 74
CJ FOIMAL = JUMIP eetiieiitie ettt et e e et e et ettt e e e e e et s e e et e e e et e e een e eeanaeeenaaes 74
Stack-Pointed-Based LOAAS.ccuuiiiiiiiiiieeei et 74
Stack-PoiNted-Based STOTEScceuuiiiiiiiii et e e e e e e 74
REQIStEr-Based LOAASccevuieiiii ettt e e e 75
REQISIEr-BASEA SEOIES ...uuiieiiieiie ettt e et e et e e e e e e e 75
Unconditional JUMP INSIUCHIONSc.uuiiiiieiiiiee e 76
Unconditional Control Transfer INStrUCHIONSooevuiiiiiiiiiiiec e 76
Conditional Control Transfer INStrUCIONSu i 77
Integer Constant-Generation INStIUCLIONSviiiiiiiiiii e 77
Integer Register-Immediate OperationS........cccuuviiiiiiiiiiiiiiiiei e 77
Integer Register-Immediate Operations (CON'L).......ccuuiveiiieeiiieeieeeee e 78
Integer Register-Immediate Operations (CON'L).......couuieiriieeiiieieeee e 78
Integer Register-Immediate Operations (CON'L).......ccuuiviiiieeiiieiie e 78

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 16

SiFive E76-MC Core Complex Manual 21G1.01.00

Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80
Figure 81
Figure 82
Figure 83
Figure 84

Integer Register-Immediate Operations (CON'L).......ceuuiviriieeiiieie e 79
Integer Register-Register OPerationS.........ccuuuveeeuieeiieieiiee e 79
Integer Register-Register Operations (CON')......cuuveierieieinieiire e e e 79
Defined lllegal INSIIUCTIONoiieereieiieeiis ettt e e et e e e eeb e e e eaa e e aeee 80
ZICST INSTIUCTIONS ...uiiieitie e ettt e ettt e et e et s e e e et s e e e e et s e e e e et e e e eebaa e eeenenan 82
Timer and Counter PSeUdOINSIIUCIONSiiiiiiiiiiiiiiii e 89
ECALL and EBREAK INStIUCHIONS.....ccuuuiiiiiiiiie ettt e e e e eeee 91
Waiit for INterrupt INSTIUCHIONceui e e 91
RISC-V AsSemMDBIY EXAMPIE ...coeiviiiiiiiiiie ettt e et e e et e eeee 94
RISC-V Assembly to0 Maching COodeccuuuiiiiiiiiiiieieiiin et 95
ONE RISC-V INSITUCTION ..vuieieeiie ettt e ettt e e et e et e e e e et s e e e e eebn e e e eeaaaneeaeees 96
Stack Memory during FUNCHON CallS........ccuuuiiiiiiiiiiieiiiiin e eeeas 98
RV32 MEMOIY LAYOUL....ceevtieeieiiiie e ettt s e e ettt e e ettt e e e et s e e e e et s e e e eeba s e e eeabnaeaaees 99
E76-MC Core Complex Interrupt Architecture Block Diagram............cccevevvinieeninnnns 120
CLINT BIOCK DI@gIamccvuueeieiiiieeeeiiie e e ettt e e e et e e e et e e s e et s e e e e et s e e e eeaa e 129
CLINT Interrupts and Vector Table..........cceuuiiiiiiiiiiie et 130
CLINT Vector Table EXAmMPIEuuiiiiiiiiieieiiiie ettt e e e e e eees 131
CLINT Interrupt Attribute EXamMPIEuiiieiiiieiieiiis ettt eeei e e 132
PLIC Multi-Core BIOCK Diagram.........cuuuuieieeiiiiieeeeiiie e et eeeeetin e e eeein e e eeenn s 136
Organization of the SiFive L2 Cache Controller...........ccovveviviiiiiiiiiieeieeeieeeeiees 146
Mapping of L2 Cache Ways to L2 LIM AdAreSSEScccuuuieerniieeiieieiieeeeieeeeeeeeann 147
Difference between L2 LIM and L2 Zero DeVICe........ccceuiviiiiieeiineeeiieecee e 150

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 17

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 1

Introduction

SiFive's E76-MC Core Complex is a high performance implementation of the RISC-V
RV32IMAFCB architecture. The SiFive E76-MC Core Complex is guaranteed to be compatible
with all applicable RISC-V standards, and this document should be read together with the offi-
cial RISC-V user-level, privileged, and external debug architecture specifications.

b RISC

A summary of features in the E76-MC Core Complex can be found in Table 1.

E76-MC Core Complex Feature Set
Feature Description
Number of Harts 4 Harts.
E7 Core 4 x E7 RISC-V cores.
PLIC Interrupts 127 Interrupt signals, which can be connected to off-core-
complex devices.
PLIC Priority Levels The PLIC supports 7 priority levels.
Level 2 Cache 512 KiB 16-way L2 Cache.
Hardware Breakpoints 4 hardware breakpoints.
Physical Memory Protection PMP with 8 regions and a minimum granularity of 64 bytes.
Unit

Table 1: E76-MC Core Complex Feature Set

The E76-MC Core Complex also has a number of on-core-complex configurability options,
allowing one to tune the design to a specific application. The configurable options are described
in Appendix A.

1.1 About this Document

This document describes the functionality of the E76-MC Core Complex 21G1.01.00. To learn
more about the Evaluation RTL deliverables of the E76-MC Core Complex, consult the E76-MC
Core Complex User Guide.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 18

SiFive E76-MC Core Complex Manual 21G1.01.00
Introduction

1.2 About this Release

This release of E76-MC Core Complex 21G1.01.00 is intended for evaluation purposes only. As
such, the RTL source code has been intentionally obfuscated, and its use is governed by your
Evaluation License.

1.3 E76-MC Core Complex Overview

The E76-MC Core Complex includes 4 x E7 32-bit RISC-V cores, along with the necessary
functional units required to support the cores. These units include a Core-Local Interruptor
(CLINT) to support local interrupts, a Platform-Level Interrupt Controller (PLIC) to support plat-
form interrupts, physical memory protection, a Debug unit to support a JTAG-based debugger
host connection, and a local cross-bar that integrates the various components together.

The E76-MC Core Complex memory system consists of a Data Cache, Data Local Store (DLS),
Instruction Cache, and Instruction Tightly-Integrated Memory (ITIM), with coherent L1 caches, a
shared L2 cache, and a directory-based coherence manager. The E76-MC Core Complex also
includes a Front Port, which allows external masters to be coherent with the L1 memory system
and access to the TIMs, thereby removing the need to maintain coherence in software for any
external agents.

An overview of the SiFive E7 Series is shown in Figure 1. Refer to the docs/
core_complex_configuration. txt file for a comprehensive summary of the E76-MC Core
Complex configuration.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 19

SiFive E76-MC Core Complex Manual 21G1.01.00
Introduction

& e76-McCore Complex

3 |
0 E76 Core
RV32IMAFC
M+U Modes

Bus Matrix

256 KB L2 Cache System Port Peripheral Port Front Port

Memory Port

N7 4

128-bit 32-bit 32-bit
AX14 AXlI4 AX14 AX14

Figure 1: E7 Series Block Diagram

The E76-MC Core Complex memory map is detailed in Section 4.2, and the interfaces are
described in full in the E76-MC Core Complex User Guide.

1.4 E7 RISC-V Cores

The E76-MC Core Complex includes four 32-bit E7 RISC-V cores, which each have a dual-
issue, in-order execution pipeline, with a peak execution rate of two instructions per clock cycle.
Each E7 core supports machine and user privilege modes, as well as standard Multiply (M), Sin-
gle-Precision Floating Point (F), Atomic (A), Compressed (C), and Bit Manipulation (B) RISC-V
extensions (RV32IMAFCB).

The cores are described in more detail in Chapter 3.

1.5 Memory System

The E76-MC Core Complex memory system has a Level 1 memory system optimized for high
performance. The instruction subsystem consists of a 32 KiB, 2-way instruction cache.

The data subsystem is comprised of a high performance 32 KiB, 4-way L1 data cache.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 20

SiFive E76-MC Core Complex Manual 21G1.01.00
Introduction

The E76-MC Core Complex also supports a shared, 512 KiB, 16-way L2 cache with 2 banks.
The L2 Cache Controller is described in Chapter 11.

The memory system is described in more detail in Chapter 3.

1.6 Interrupts

The E76-MC Core Complex provides the standard RISC-V M-mode timer and software inter-
rupts via the Core-Local Interruptor (CLINT).

The E76-MC Core Complex also includes a RISC-V standard Platform-Level Interrupt Controller
(PLIC), which supports 127 global interrupts with 7 priority levels.

Interrupts are described in Chapter 7. The CLINT is described in Chapter 8. The PLIC is
described in Chapter 9.

1.7 Debug Support

The E76-MC Core Complex provides external debugger support over an industry-standard
JTAG port, including 4 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 13, and the debug interface is described in the
E76-MC Core Complex User Guide.

1.8 Compliance

The E76-MC Core Complex is compliant to the following versions of the various RISC-V specifi-
cations:

ISA Version | Ratified | Frozen
RV32l Base Integer Instruction Set 2.0 Y
Extensions Version | Ratified | Frozen
M Standard Extension for Integer Multiplication and Division 2.0 Y

A Standard Extension for Atomic Instruction 2.0 Y

F Standard Extension for Single-Precision Floating-Point 2.0 Y

C Standard Extension for Compressed Instruction 2.0 Y

B Standard Extension for Bit Manupulation 1.0

Privilege Mode Version | Ratified | Frozen
Machine-Level ISA 1.10

User-Level ISA 1.10

Devices Version | Ratified | Frozen
The RISC-V Debug Specification 0.13

Table 2: RISC-V Specification Compliance

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 21

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 2

List of Abbreviations and Terms

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 22

SiFive E76-MC Core Complex Manual 21G1.01.00
List of Abbreviations and Terms

Term Definition

AES Advanced Encryption Standard

BHT Branch History Table

BTB Branch Target Buffer

CBC Cipher Block Chaining

CCM Counter with CBC-MAC

CFM Cipher FeedBack

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core-
local interrupts.

CLINT Core-Local Interruptor. Generates per hart software interrupts and timer
interrupts.

CTR CounTeR mode

DTIM Data Tightly Integrated Memory

ECB Electronic Code Book

GCM Galois/Counter Mode

hart HARdware Thread

IJTP Indirect-Jump Target Predictor

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely-Integrated Memory. Used to describe memory space delivered in
a SiFive Core Complex that is not tightly integrated to a CPU core.

MDP Memory Dependence Predictor

MSHR Miss Status Handling Register

NLP Next-Line Predictor

OFB Output FeedBack

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a
RISC-V system.

PMP Physical Memory Protection

RAS Return-Address Stack

RO Used to describe a Read-Only register field.

ROB Reorder Buffer

RW Used to describe a Read/Write register field.

RW1C Used to describe a Read/Write-1-to-Clear register field.

SHA Secure Hash Algorithm

TileLink A free and open interconnect standard originally developed at UC Berke-
ley.

TRNG True Random Number Generator

WARL Write-Any, Read-Legal field. A register field that can be written with any
value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for
future use. Writes to the field are ignored, and reads should ignore the
value returned.

Table 3: Abbreviations and Terms

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 23

SiFive E76-MC Core Complex Manual 21G1.01.00
List of Abbreviations and Terms

Term Definition

WLRL Write-Legal, Read-Legal field. A register field that should only be written
with legal values and that only returns legal value if last written with a
legal value.

WPRI Writes-Preserve, Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes
to the whole register should preserve the original value.

WO Used to describe a Write-Only registers field.

Wi1cC Used to describe a Write-1-to-Clear register field.

RVV RISC-V Vector ISA.

VLEN Parameter which defines the number of bits in a single vector register.
SLEN Parameter which specifies the striping distance.

ELEN Paramater which defines the execution length.

SEW Parameter which defines the selected element width.

LMUL Vector register grouping factor.

DLEN Vector ALU and memory datapath width.

Table 3: Abbreviations and Terms

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 24

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 3

E7 RISC-V Core

This chapter describes the 32-bit E7 RISC-V processor core, instruction fetch and execution
unit, L1 and L2 memory systems, Physical Memory Protection unit, Hardware Performance
Monitor, and external interfaces.

The E7 feature set is summarized in Table 4.

Feature Description

ISA RV32IMAFCB

SiFive Custom Instruction Extension (SCIE) Not Present

Modes Machine mode, user mode

L1 Instruction Cache 32 KiB 2-way instruction cache
Instruction Tightly-Integrated Memory (ITIM) | 32 KiB ITIM

L1 Data Cache 32 KiB 4-way data cache

Data Local Store (DLS) 32 KiB DLS with 1 bank

L2 Cache 512 KiB 16-way L2 cache with 2 banks
Fast 1/10 Present

Physical Memory Protection 8 regions with a granularity of 64 bytes.

Table 4: E7 Feature Set

3.1 Supported Modes

The E7 supports RISC-V user mode, providing two levels of privilege: machine (M) and user
(U). U-mode provides a mechanism to isolate application processes from each other and from
trusted code running in M-mode.

See The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10 for
more information on the privilege modes.

3.2 Instruction Memory System

This section describes the instruction memory system of the E7 core.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 25

SiFive E76-MC Core Complex Manual 21G1.01.00

E7 RISC-V Core

3.2.1 Execution Memory Space

The regions of executable memory consist of all directly addressable memory in the system.
The memory includes any volatile or non-volatile memory located off the Core Complex ports,
and includes the on-core-complex ITIM, L2 LIM, and L2 Zero Device.

Table 5 shows the executable regions of the E76-MC Core Complex.

Base Top Description
0x0180_0000 | 0x0180_7FFF | Hart 0 ITIM
0x0180_8000 | Ox0180_FFFF | Hart 1 ITIM
0x0181_0000 | 0x0181_7FFF | Hart 2 ITIM
0x0181_8000 | Ox0181 FFFF | Hart 3 ITIM

0x0190_0000

OXx0190_7FFF

Hart O Data Local Store

0x0190_8000

OX0190_FFFF

Hart 1 Data Local Store

0x0191_0000

0x0191_7FFF

Hart 2 Data Local Store

0x0191_8000

0x0191_FFFF

Hart 3 Data Local Store

Ox0800_0000

Ox0807_FFFF

L2 LIM

OXO0AQO_0000

OXOAO7_FFFF

L2 Zero Device

0Xx2000_0000

OX3FFF_FFFF

Peripheral Port (512 MiB)

0x4000_0000

OX5FFF_FFFF

System Port (512 MiB)

Ox8000_0000

OX9FFF_FFFF

Memory Port (512 MiB)

Table 5: Executable Memory Regions for the E76-MC
Core Complex

All executable regions, except the ITIM, are treated as instruction cacheable. There is no
method to disable this behavior.

Trying to execute an instruction from a non-executable address results in an instruction access
trap.

3.2.2 L1 Instruction Cache

The L1 instruction cache is a 32 KiB 2-way set-associative cache. It has a line size of 64 bytes
and is read/write-allocate with a random replacement policy. A cache line fill triggers a burst
access outside of the Core Complex, starting with the first address of the cache line. There are
no write-backs to memory from the instruction cache and it is not kept coherent with rest of the
platform memory system. In multi-core systems, the instruction caches are not kept coherent
with each other.

Out of reset, all blocks of the instruction cache are invalidated. The access latency of the cache

is one clock cycle. There is no way to disable the instruction cache and cache allocations begin
immediately out of reset.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 26

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

3.2.3 Cache Maintenance

The instruction cache supports the FENCE. I instruction, which invalidates the entire instruction
cache, as described in Section 5.12. Writes to instruction memory from the core or another mas-
ter must be synchronized with the instruction fetch stream by executing FENCE . I.

3.2.4 Coherence with an L2 Cache

The L1 instruction cache is partially inclusive with the L2 Cache, described in Chapter 11. When
a block of instruction memory is allocated to the L1 cache, it is also allocated to the L2 cache if

the access was from the Memory Port. Instruction accesses to all other ports will not allocate to
the L2 cache, only the L1 cache.

When a block is evicted from L1, it might still reside in the L2, which will reduce access time the
next time the block is fetched.

If a hart modifies instruction memory (i.e., self-modifying code), then a FENCE. I instruction is
required to synchronize the instruction and data streams. Even though FENCE. I targets the L1
instruction cache, no cache operation is required on the L2 cache to maintain instruction
coherency.

3.2.5 Instruction Tightly-Integrated Memory (ITIM)

The E7 includes a 32 KiB ITIM in addition to the L1 instruction cache. ITIM accesses have the
same performance as instruction cache hits, but can never suffer a miss. This makes the ITIM
useful for storing code, which benefits from deterministic execution such as interrupt handlers.

3.2.6 Instruction Fetch Unit

The E7 instruction fetch unit is responsible for keeping the pipeline fed with instructions from
memory. The instruction fetch unit delivers up to 8 bytes of instructions per clock cycle to sup-
port superscalar instruction execution. Fetches are always word-aligned and there is a one-
cycle penalty for branching to a 32-bit instruction that is not word-aligned.

The E7 implements the standard Compressed (C) extension to the RISC-V architecture, which
allows for 16-bit RISC-V instructions. As four 16-bit instructions can be fetched per cycle, the
instruction fetch unit can be idle when executing programs comprised mostly of compressed
16-bit instructions. This reduces memory accesses and power consumption.

All branches must be aligned to half-word addresses. Otherwise, the fetch generates an instruc-

tion address misaligned trap. Trying to fetch from a non-executable or unimplemented address
results in an instruction access trap.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 27

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

3.2.7 Branch Prediction

The E7 instruction fetch unit contains sophisticated predictive hardware to mitigate the perfor-
mance impact of control hazards within the instruction stream. The instruction fetch unit is
decoupled from the execution unit, so that correctly predicted control-flow events usually do not
result in execution stalls.

« A 4-entry branch target buffer (BTB), which predicts the target of taken branches and direct
jumps;

* A 1.3 KiB branch history table (BHT), which predicts the direction of conditional branches;
¢ A 2-entry indirect-jump target predictor (IJTP);

« A 3-entry return-address stack (RAS), which predicts the target of procedure returns.

The BHT is a correlating predictor that supports long branch histories. The BTB has one-cycle
latency, so that correctly predicted branches and direct jumps result in no penalty, provided the
target is 8-byte aligned.

Direct jumps that miss in the BTB result in a one-cycle fetch bubble. This event might not result
in any execution stalls if the fetch queue is sufficiently full.

The BHT, IJTP, and RAS take precedence over the BTB. If these structures' predictions dis-
agree with the BTB’s prediction, a one-cycle fetch bubble results. Similar to direct jumps that
miss in the BTB, the fetch bubble might not result in an execution stall.

Mispredicted branches usually incur a four-cycle penalty, but sometimes the branch resolves
later in the execution pipeline and incurs a six-cycle penalty instead. Mispredicted indirect jumps
incur a six-cycle penalty.

Branch prediction is enabled out of reset and cannot be disabled. However, instruction specula-
tion, fetching before a prediction is confirmed, must be enabled in the Feature Disable CSR,
described in Chapter 6.

As instruction speculation can occur at any point after it has been enabled, data cacheable
regions of memory (i.e., DDR) must be able to respond to instruction fetches immediately after
instruction speculation is enabled. If DDR initialization is not completed before instruction specu-
lation is enabled, the memory system must return a decode error (DECERR) for accesses made
to DDR. The fetch unit will ignore errors associated with speculative accesses and continue to
operate normally.

The Branch Prediction Mode CSR, also described in Chapter 6, provides a means to customize
the branch predictor behavior to trade average performance for more predictable execution
time.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 28

SiFive E76-MC Core Complex Manual 21G1.01.
E7 RISC-V Core

3.3 Execution Pipeline

F1 F2 D1 D2 AG M1 M2 wB

‘ Branch Predictor ‘ ‘ Data Cache/TIM
’—‘ R —] Pipeline A

> >
Integer
Register

" .

Instruction Cache / TIM

‘ Multiply

I I I I Pipeline B

FP
RegFile

MHA&A&A@

Floating Point —

Figure 2: Example E7 Block Diagram

The E7 execution unit is a dual-issue, in-order pipeline. The pipeline comprises eight stages:
two stages of instruction fetch (F1 and F2), two stages of instruction decode (D1 and D2),
address generation (AG), two stages of data memory access (M1 and M2), and register write-
back (WB). The pipeline has a peak execution rate of two instructions per clock cycle, and is
fully bypassed so that most instructions have a one-cycle result latency:

 Integer arithmetic and branch instructions can execute in either the AG or M2 pipeline
stage. If such an instruction’s operands are available when the instruction enters the AG
stage, then it executes in AG; otherwise, it executes in M2.

» Loads produce their result in the M2 stage. There is no load-use delay for most integer
instructions. However, effective addresses for memory accesses are always computed in
the AG stage. Hence, loads, stores, and indirect jumps require their address operands to

00

be ready when the instruction enters AG. If an address-generation operation depends upon

a load from memory, then the load-use delay is two cycles.

 Integer multiplication instructions consume their operands in the AG stage and produce
their results in the M2 stage. The integer multiplier is fully pipelined.

 Integer division instructions consume their operands in the AG stage. These instructions
have between a six-cycle and 68-cycle result latency, depending on the operand values.

* CSR accesses execute in the M2 stage. CSR read data can be bypassed to most integer

instructions with no delay. Most CSR writes flush the pipeline, which is a seven-cycle
penalty.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

29

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

Instruction Latency

LW Three-cycle latency, assuming cache hit!

LH, LHU, LB, LBU Three-cycle latency, assuming cache hit!

CSR Reads One-cycle latency?

MUL, MULH, MULHU, Three-cycle latency

MULHSU

DIV, DIVU, REM, REMU Between six-cycle to 68-cycle latency, depending on operand
values®

LEffective address not ready in AG stage. Load to use latency = load to use delay + 1
2 cycle latency = cycle delay + 1

3The latency of DIV, DIVU, REM, and REMU instructions can be determined by calculating:
Latency = 2 cycles + logp(dividend) - logz(divisor) + 1 cycle
if the input is negative + 1 cycle if the output is negative

Table 6: E7 Instruction Latency

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

The pipeline implements a flexible dual-instruction-issue scheme. Provided there are no data
hazards between a pair of instructions, the two instructions may issue in the same cycle, pro-
vided the following constraints are met:

« At most one instruction accesses data memory.

e At most one instruction is a branch or jump.

< At most one instruction is a floating-point arithmetic operation.

« At most one instruction is an integer multiplication or division operation.

< Neither instruction explicitly accesses a CSR.

See Appendix C for a complete list of floating-point unit instruction timings.

3.4 Data Memory System

The data memory system consists of on-core-complex data and the ports in the E76-MC Core
Complex memory map, shown in Section 4.2. The on-core-complex data memory consists of a
32 KiB L1 data cache and 512 KiB L2 cache. A design cannot have both data cache and DTIM.

Data accesses are classified as cacheable, for those targeting the Memory Port; or non-

cacheable, for those targeting any other port in the Core Complex. Non-cacheable data
accesses are collectively called memory-mapped I/O accesses, or MMIOs.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 30

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

The E7 pipeline allows for multiple outstanding memory accesses, but only allows one outstand-
ing cache line fill. The memory system includes the Fast I/O feature, described in Section 3.5,
which improves the throughput of MMIOs. The number of outstanding MMIOs are implementa-
tion dependent. Misaligned accesses are not allowed to any memory region and result in a trap
to allow for software emulation.

3.4.1 L1 Data Cache

The L1 data cache is a 32 KiB 4-way set-associative cache. It has a line size of 64 bytes and is
read/write-allocate with a random replacement policy. The cache operates in write-back mode;
this means that if a cache line is dirty, it is written back to memory when evicted. Out of reset, all
lines of the cache are invalidated.

The Memory Port address range is the only cacheable region of memory. A cache line fill trig-
gers a burst access starting with the first address of the cache line. On a cache hit, the access
latency is two clock cycles for words and double-words, and three clock cycles for smaller quan-
tities. Stores are pipelined and commit on cycles where the data memory system is otherwise
idle. Pending stores are stored in a buffer, which drains whenever there is an idle cycle or
another store. Loads to addresses currently in the store pipeline result in a five-cycle penalty.

The data cache supports only one outstanding line fill. Once a cacheable access is made that
misses, another cannot be issued until the line fill completes. However, other MMIOs can be
issued before or after the line fill as long as there are no address or register hazards.

The data cache cannot be disabled and the properties of the Memory Port cannot be modified to
prevent cacheable accesses.

3.4.2 Cache Maintenance Operations

The data cache supports CFLUSH.D.L1 and CDISCARD.D.L1. The instruction CFLUSH.D.L1
cleans and invalidates the specified line or all cache lines. The instruction CDISCARD.D. L1 inval-
idates the specified line or all cache lines.

These custom instructions are further described in Chapter 6.

3.4.3 L1 Data Cache Coherency

All of the L1 data caches in the Core Complex are kept coherent with an integrated coherency
manager. This is an automatic feature and cannot be disabled. The CFLUSH.D.L1 and
CDISCARD.D.L1 instructions only affect the core that executed the instruction. They are not
broadcast to all cores in the Complex.

3.4.4 Coherence with an L2 Cache

The L1 data cache is inclusive with the L2 cache, described in Chapter 11.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 31

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

When a block of data is allocated to the L1 cache, it is also allocated to the L2 cache. When a
block is evicted from the L1, the corresponding line in the L2 is then updated and marked dirty.

The custom instructions CFLUSH.D.L1 and CDISCARD.D, L1 only target the L1 data cache, and
do not impact the L2 cache. The L2 cache controller contains flush capability, which performs a
clean and invalidate operation of a line in the L2 cache. If the targeted line also resides in the L1
cache, then it too will be cleaned and invalidated. Section 11.4.3 describes how to flush the L2
cache.

3.4.5 Data Local Store (DLS)

The E7 includes an additional fast, local memory called the Data Local Store (DLS). The DLS is
32 KiB in size, has 1 bank, and is directly addressable, as shown in Section 4.2. Accesses to
the DLS have a fixed, two-cycle latency, which makes it ideal for holding data that requires
deterministic access time.

Each hart has its own DLS region, but it is not private to each hart.

3.5 Fastl/O

The Fast I/O feature improves the performance of the memory-mapped I/0 (MMIO) subsystem.
This is achieved by predicting whether an access is I/O or not by examining the base address of
a read or write.

Fast I/O enables a sustained rate of one MMIO operation per clock cycle. By contrast, when this
feature is excluded, MMIO loads can only sustain half that rate. Fast I/0O also decouples the
MMIO load response from the cache-hit path. This way, MMIO requests and responses can
happen on the same cycle, doubling the peak load throughput.

Note
Fast I/O is NOT an I/O port.

3.6 Atomic Memory Operations

The E7 core supports the RISC-V standard Atomic (A) extension on the Memory Port, Periph-
eral Port, and internal memory regions.

Atomic instructions that target the Memory Port are implemented in the data cache and are not
observable on the external data bus. The load-reserved (LR) and store-conditional (SC) instruc-
tions are special atomic instructions that are only supported in data cacheable regions. They will
generate a precise access exception if targeted at uncacheable data regions.

Atomic memory operations are not supported on the System Port. Atomic operations that target
the System Port will generate a precise access exception.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 32

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

See Section 5.4 for more information on the instructions added by this extension.

3.7 Floating-Point Unit (FPU)

The E7 FPU provides full hardware support for the IEEE 754-2008 floating-point standard for
32-bit single-precision arithmetic. The FPU includes a fully pipelined fused-multiply-add unit and
an iterative divide and square-root unit, magnitude comparators, and float-to-integer conversion
units, all with full hardware support for subnormals and all IEEE default values.

Section 5.5 describes the 32-bit single-precision instructions.

The FPU comes up disabled on reset. First initialize fcsr and mstatus.FS prior to executing
any floating-point instructions. In the freedom-metal startup code, write mstatus.FS[1:0] to
Ox1.

3.8 Physical Memory Protection (PMP)

Machine mode is the highest privilege level and by default has read, write, and execute permis-
sions across the entire memory map of the device. However, privilege levels below machine
mode do not have read, write, or execute permissions to any region of the device memory map
unless it is specifically allowed by the PMP. For the lower privilege levels, the PMP may may
grant permissions to specific regions of the device’s memory map, but it can also revoke per-
missions when in machine mode.

When programmed accordingly, the PMP will check every access when the hart is operating in
user mode. For machine mode, PMP checks do not occur unless the lock bit (L) is set in the
pmpcfgY CSR for a particular region.

PMP checks also occur on loads and stores when the machine previous privilege level is user
(mstatus.MPP=0x0), and the Modify Privilege bit is set (nstatus.MPRv=1). For virtual address
translation, PMP checks are also applied to page table accesses in supervisor mode.

The E7 PMP supports 8 regions with a minimum region size of 64 bytes.

This section describes how PMP concepts in the RISC-V architecture apply to the E7. For addi-
tional information on the PMP refer to The RISC-V Instruction Set Manual, Volume Il: Privileged
Architecture, Version 1.10.

3.8.1 PMP Functional Description

The E7 PMP unit has 8 regions and a minimum granularity of 64 bytes. Access to each region is
controlled by an 8-bit pmpXcfg field and a corresponding pmpaddrX register. Overlapping regions
are permitted, where the lower numbered pmpXcfg and pmpaddrX registers take priority over
highered numbered regions. The E7 PMP unit implements the architecturally defined pmpcfgy
CSRs pmpcfge and pmpcfgl, supporting 8 regions. pmpcfg2 and pmpcfg3 are implemented, but
hardwired to zero.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 33

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

The PMP registers may only be programmed in M-mode. Ordinarily, the PMP unit enforces per-
missions on U-mode accesses. However, locked regions (see Section 3.8.2) additionally
enforce their permissions on M-mode.

3.8.2 PMP Region Locking

The PMP allows for region locking whereby, once a region is locked, further writes to the config-
uration and address registers are ignored. Locked PMP entries may only be unlocked with a
system reset. A region may be locked by setting the L bit in the pmpXxcfg register.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are
enforced on machine mode accesses. When the L bit is clear, the R/W/X permissions apply only
to U-mode.

3.8.3 PMP Registers

Each PMP region is described by an 8-bit pmpXcfg field, used in association with a 32-bit
pmpaddrX register that holds the base address of the protected region. The range of each region
depends on the Addressing (A) mode described in the next section. The pmpXcfg fields reside
within 32-bit pmpcfgY CSRs.

Each 8-bit pmpXcfg field includes a read, write, and execute bit, plus a two bit address-matching
field A, and a Lock bit, L. Overlapping regions are permitted, where the lowest numbered PMP
entry wins for that region.

PMP Configuration Registers
The pmpcfgY CSRs are shown below for a 32-bit design.

31 24 23 16 15 8 7 0
l)) ‘pmp‘3cfg‘)))) ngZch)))) pmglch)) ‘)) ‘pmp‘chg‘

Figure 3: RV32 pmpcfg0 Register

31 24 23 16 15 8 7 0
‘pmp‘7cfg‘)) ‘)) pmpﬁch)) ‘)) pmgSch)) ‘)) ‘pmp‘4cfg‘

Figure 4: RV32 pmpcfgl Register

31 24 23 16 15 8 7 0
pmp}lcfg)) ‘) pmp}chg) ‘) pmpﬁch L ‘)) ‘pmp‘scfg‘

Figure 5: RV32 pmpcfg2 Register

31 24 23 16 15 8 7 0
| . empisclg . | . . pmplacfg | . pmplcfg . [. pmplacfg |

Figure 6: RV32 pmpcfg3 Register

The pmpcfgY and pmpaddrX registers are only accessible via CSR specific instructions such as
csrr for reads, and csrw for writes.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 34

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

7 6 ' 5 4 ' 3 2 1 0
| Lwary) | 0 (WARL) \ A (WARL) | xwary [wwarL) | R(waRL)

Figure 7: RV64 pmpXcfg bitfield

Bits | Description
0 R: Read Permissions

* 0x0 - No read permissions for this region

» 0x1 - Read permission granted for this region
1 W: Write Permissions

* 0x0 - No write permissions for this region

» 0x1 - Write permission granted for this region
2 X: Execute permissions

* 0x0 - No execute permissions for this region

» 0x1 - Execute permission granted for this region
[4:3] | A: Address matching mode

* 0xO0 - PMP Entry disabled. No PMP protection applied for any privilege level.

» 0x1 - Top of range (TOR) region defined by two adjacent pmpaddr registers. The
upper limit of region X is defined by pmpaddrX, and the base of the region is
defined by pmpaddr (X-1). Address 'a’ matches the region if [pmpaddr (X-1) €<a <
pmpaddrX]. If pmpecfg defines a TOR region, then the base address of that
region is 0x0, and pmpaddro defines the upper limit. Supports only a four byte
granularity.

* 0x2 - Naturally aligned four-byte region (NA4). Supports only a four-byte region
with four byte granularity.

» 0x3 - Naturally aligned power-of-two region (NAPOT), = 8 bytes. When this set-
ting is programmed, the low bits of the pmpaddrX register encode the size, while
the upper bits encode the base address right shifted by two. There is a zero bit in
between, we will refer to as the least significant zero bit (LSZB).

7 L: Lock Bit

* 0xO0 - PMP Entry Unlocked, no permission restrictions applied to machine mode.
PMP entry only applies to S and U modes.

» 0x1 - PMP Entry Locked, permissions enforced for all privilege levels including
machine mode. Writes to pmpXcfg and pmpcfgY are ignored and can only be
cleared with system reset.

Note: The combination of R=0 and W=1 is not currently implemented.

Table 7: pmpXcfg Bitfield Description

Out of reset, the PMP register fields A and L are set to 0. All other hart state is unspecified by
The RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 35

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

Some examples follow using NAPOT address mode.

Base Region LSZB

Address Sige* Position pmpaddrX Value
0x4000_0000 8B 0 (6x1000_0000 | 1'b0O)
0x4000_0000 32B 2 (0x1000_0000 | 3’b011)
0x4000_0000 4 KB 9 (0x1000_0000 | 10'b61_1111_1111)
0x4000_0000 64 KB 13 (6x1000_0000 | 14'bO1_1111_ 1111 1111)
0x4000_0000 1 MB 17 (0x1000_0000 | 18'bG1_1111 1111 1111_1111)
*Region size is 2(-528+3)

Table 8: pmpaddrXx Encoding Examples for A=NAPOT

PMP Address Registers

The PMP has 8 address registers. Each address register pmpaddrX correlates to the respective
pmpXcfg field. Each address register contains the base address of the protected region right
shifted by two, for a minimum 4-byte alignment.

The maximum encoded address bits per The RISC-V Instruction Set Manual, Volume II: Privi-
leged Architecture, Version 1.10 are [33:2].

=5
| address[33:2] (WARL)

Figure 8: RV32 pmpaddrX Register

3.8.4 PMP and PMA

The PMP values are used in conjunction with the Physical Memory Attributes (PMAs) described
in Section 4.1. Since the PMAs are static and not configurable, the PMP can only revoke read,
write, or execute permissions to the PMA regions if those permissions already apply statically.

3.8.5 PMP Programming Overview

The PMP registers can only be programmed in machine mode. The pmpaddrX register should
be first programmed with the base address of the protected region, right shifted by two. Then,
the pmpcfgy register should be programmed with the properly configured 32-bit value containing
each properly aligned 8-bit pmpXcfg field. Fields that are not used can be simply written to 0O,
marking them unused.

PMP Programming Example

The following example shows a machine mode only configuration where PMP permissions are
applied to three regions of interest, and a fourth region covers the remaining memory map.
Recall that lower numbered pmpXcfg and pmpaddrX registers take priority over higher numbered
regions. This rule allows higher numbered PMP registers to have blanket coverage over the

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 36

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

entire memory map while allowing lower numbered regions to apply permissions to specific
regions of interest. The following example shows a 64 KB Flash region at base address 0x0, a
32 KB RAM region at base address 0x2000_0000, and finally a 4 KB peripheral region at base
address base 0x3000_0000. The rest of the memory map is reserved space.

0x0000_0000

Read, Execute Region 0: TOR for 64KB region
Flash |::: - pmpOcfg = 86"1000_1101 (0x8D)

- pmpaddr0 = 0x0000_4000

Read, Write Region 1: NAPOT for 32KB region
RAM
- pmplcfg = 80'1001_1011 (0x9B)

0x2000_8000 - pmpaddrl = 0x0800_OFFF (LSZB = 12)

0%3000_0000 e Read, Write Region 2: NAPOT for 4KB region
Peripherals
0x3000_1000 P - pmp2cfg = 8b'1001_1011 (0x9B)

- pmpaddr2 = 0x0C00_O1FF (LSZB = 9)

0x0001_0000

0x2000_0000

No Access Region 3: NAPOT for 4GB region

(All other memory) - pmp3cfg = 86'1001_1000 (0x98)
- pmpaddr3 = OX1FFF_FFFF (LSZB = 29)

OXFFFF_FFFF

bit 7 bit 0

pmpXcfg [L]ofo]ana[x[w]Rr]

2b'01 = TOR
2b'11 = NAPOT

Figure 9: PMP Example Block Diagram

PMP Access Scenarios

The L, R, W, and X bits only determine if an access succeeds if all bytes of that access are cov-
ered by that PMP entry. For example, if a PMP entry is configured to match the four-byte range
0xC—0xF, then an 8-byte access to the range 0x8—0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

While operating in machine mode when the lock bit is clear (L=0), if a PMP entry matches all
bytes of an access, the access succeeds. If the lock bit is set (L=1) while in machine mode, then
the access depends on the permissions set for that region. Similarly, while in Supervisor mode,
the access depends on permissions set for that region.

Failed read or write accesses generate a load or store access exception, and an instruction

access fault would occur on a failed instruction fetch. When an exception occurs while attempt-
ing to execute from a region without execute permissions, the fault occurs on the fetch and not

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 37

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

the branch, so the mepc CSR will reflect the value of the targeted protected region, and not the
address of the branch.

It is possible for a single instruction to generate multiple accesses, which may not be mutually
atomic. If at least one access generated by an instruction fails, then an exception will occur. It
might be possible that other accesses from a single instruction will succeed, with visible side
effects. For example, references to virtual memory may be decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be
decomposed into multiple accesses, some of which may succeed before an access exception
occurs. In particular, a portion of a misaligned store that passes the PMP check may become
visible, even if another portion fails the PMP check. The same behavior may manifest for float-
ing-point stores wider than XLEN bits (e.g., the FSD instruction in RV32D), even when the store
address is naturally aligned.

3.8.6 PMP and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based vir-
tual memory systems described in The RISC-V Instruction Set Manual, Volume II: Privileged
Architecture, Version 1.10. When paging is enabled, instructions that access virtual memory
may result in multiple physical-memory accesses, including implicit references to the page
tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit
page-table accesses is supervisor mode.

Implementations with virtual memory are permitted to perform address translations speculatively
and earlier than required by an explicit virtual-memory access. The PMP settings for the result-
ing physical address may be checked at any point between the address translation and the
explicit virtual-memory access. A mis-predicted branch to a non-executable address range does
not generate a trap. Hence, when the PMP settings are modified in a manner that affects either
the physical memory that holds the page tables or the physical memory to which the page
tables point, M-mode software must synchronize the PMP settings with the virtual memory sys-
tem. This is accomplished by executing an SFENCE. VMA instruction with rs1=x0 and rs2=x0,
after the PMP CSRs are written.

If page-based virtual memory is not implemented, or when it is disabled, memory accesses
check the PMP settings synchronously, so no fence is needed.

3.8.7 PMP Limitations

In a system containing multiple harts, each hart has its own PMP device. The PMP permissions
on a hart cannot be applied to accesses from other harts in a multi-hart system. In addition,
SiFive designs may contain a Front Port to allow external bus masters access to the full mem-
ory map of the system. The PMP cannot prevent access from external bus masters on the Front
Port.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 38

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

3.8.8 Behavior for Regions without PMP Protection

If a non-reserved region of the memory map does not have PMP permissions applied, then by
default, supervisor or user mode accesses will fail, while machine mode access will be allowed.
Access to reserved regions within a device’s memory map (an interrupt controller for example)
will return @x0 on reads, and writes will be ignored. Access to reserved regions outside of a
device’'s memory map without PMP protection will result in a bus error.

3.8.9 Cache Flush Behavior on PMP Protected Region

When a line is brought into cache and the PMP is set up with the lock (L) bit asserted to protect
a part of that line, a data cache flush instruction will generate a store access fault exception if
the flush includes any part of the line that is protected. The cache flush instruction does an
invalidate and write-back, so it is essentially trying to write back to the memory location that is
protected. If a cache flush occurs on a part of the line that was not protected, the flush will suc-
ceed and not generate an exception. If a data cache flush is required without a write-back, use
the cache discard instruction instead, as this will invalidate but not write back the line.

3.9 Hardware Performance Monitor

The E7 processor core supports a basic hardware performance monitoring (HPM) facility. The
performance monitoring facility is divided into two classes of counters: fixed-function and event-
programmable counters. These classes consist of a set of fixed counters and their counter-
enable registers, as well as a set of event-programmable counters and their event selector reg-
isters. The registers are available to control the behavior of the counters. Performance monitor-
ing can be useful for multiple purposes, from optimization to debug.

3.9.1 Performance Monitoring Counters Reset Behavior

The instret and cycle counters are initialized to zero on system reset. The hardware perfor-
mance monitor event counters are not initialized on system reset, and thus have an arbirary
value. Users can write desired values to the counter control and status registers (CSRs) to start
counting at a given, known value.

3.9.2 Fixed-Function Performance Monitoring Counters

A fixed-function performance monitor counter is hardware wired to only count one specific event
type. That is, they cannot be reconfigured with respect to the event type(s) they count. The only
modification to the fixed-function performance monitoring counters that can be done is to enable
or disable counting, and write the counter value itself.

The E7 processor core contains two fixed-function performance monitoring counters.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 39

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

Fixed-Function Cycle Counter (mcycle)

The fixed-function performance monitoring counter mcycle holds a count of the number of clock
cycles the hart has executed since some arbitrary time in the past. The mcycle counter is read-
write and 64 bits wide. Reads of mcycle return the lower 32 bits, while reads of mcycleh return

the upper 32 bits of the 64-bit mcycle counter.

Fixed-Function Instructions-Retired Counter (minstret)

The fixed-function performance monitoring counter minstret holds a count of the number of
instructions the hart has retired since some arbitrary time in the past. The minstret counter is
read-write and 64 bits wide. Reads of minstret return the lower 32 bits, while reads of
minstreth return the upper 32 bits of the 64-bit minstret counter.

3.9.3 Event-Programmable Performance Monitoring Counters

Complementing the fixed-function counters are a set of programmable event counters. The E7
HPM includes two addtitional event counters, mhpmcounter3 and mhpmcounter4. These pro-
grammable event counters are read-write and 64 bits wide. Reads of any of mhpmcounter3h or
mhpmcounter4h return the upper 32 bits of their corresponding machine performance-monitoring
counter. The hardware counters themselves are implemented as 40-bit counters on the E7 core
series. These hardware counters can be written to in order to initialize the counter value.

3.9.4 Event Selector Registers

To control the event type to count, event selector CSRs mhpmevent3 and mhpmevent4 are used
to program the corresponding event counters. These event selector CSRs are 32-bit WARL reg-
isters.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

| EventMask[55:0] | EventCiass |

Figure 10: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs. For example, if
mhpmevent3 is set to 0x4200, then mhpmcounter3 will increment when either a load instruction
or a conditional branch instruction retires. An event selector of 0 means "count nothing".

3.9.5 Event Selector Encodings

Table 9 describes the event selector encodings available. Events are categorized into classes
based on the Event Class field encoded in mhpmeventX[7:0]. One or more events can be pro-
grammed by setting the respective Event Mask bit for a given event class. An event selector

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 40

SiFive E76-MC Core Complex Manual

E7 RISC-V Core

21G1.01.00

encoding of 0 means "count nothing". Multiple events will cause the counter to increment any
time any of the selected events occur.

Machine Hardware Performance Monitor Event Register

Instruction Commit Events, mhpmeventX[7:0]=0x0

Bits

Description

8

Exception taken

9

Integer load instruction retired

10

Integer store instruction retired

11

Atomic memory operation retired

12

System instruction retired

13

Integer arithmetic instruction retired

14

Conditional branch retired

15

JAL instruction retired

16

JALR instruction retired

17

Integer multiplication instruction retired

18

Integer division instruction retired

19

Floating-point load instruction retired

20

Floating-point store instruction retired

21

Floating-point addition retired

22

Floating-point multiplication retired

23

Floating-point fused multiply-add retired

24

Floating-point division or square-root retired

25

Other floating-point instruction retired

Microarchitectural Events, mhpmeventX[7:0]=0x1

Bits

Description

8

Address-generation interlock

9

Long-latency interlock

10

CSR read interlock

11

Instruction cache/ITIM busy

12

Data cache/DTIM busy

13

Branch direction misprediction

14

Branch/jump target misprediction

15

Pipeline flush from CSR write

16

Pipeline flush from other event

17

Integer multiplication interlock

18

Floating-point interlock

Memory System Events, mhpmeventX[7:0]=0x2

Bits

Description

8

Instruction cache miss

9

Data cache miss or memory-mapped I/O access

10

Data cache write-back

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

Table 9: mhpmevent Register

41

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

Event mask bits that are writable for any event class are writable for all classes. Setting an
event mask bit that does not correspond to an event defined in Table 9 has no effect for current
implementations. However, future implementations may define new events in that encoding
space, so it is not recommended to program unsupported values into the mhpmevent registers.

Combining Events

It is common usage to directly count each respective event. Additionally, it is possible to use
combinations of these events to count new, unique events. For example, to determine the aver-
age cycles per load from a data memory subsystem, program one counter to count "Data cache/
DTIM busy" and another counter to count "Integer load instruction retired". Then, simply divide
the "Data cache/DTIM busy" cycle count by the "Integer load instruction retired" instruction
count and the result is the average cycle time for loads in cycles per instruction.

It is important to be cognizant of the event types being combined; specifically, event types
counting occurrences and event types counting cycles.

3.9.6 Counter-Enable Registers

The 32-bit counter-enable register mcounteren controls the availability of the hardware perfor-
mance-monitoring counters to the next-lowest privileged mode.

The settings in these registers only control accessibility. The act of reading or writing these
enable registers does not affect the underlying counters, which continue to increment when not
accessible.

When any bit in the mcounteren register is clear, attempts to read the cycle, time, instruction
retire, or hpmcounterX register while executing in U-mode will cause an illegal instruction excep-
tion. When one of these bits is set, access to the corresponding register is permitted in the next
implemented privilege mode, U-mode.

mcounteren is @a WARL register. Any of the bits may contain a hardwired value of zero, indicat-
ing reads to the corresponding counter will cause an illegal instruction exception when execut-
ing in a less-privileged mode.

3.10 L2 Performance Monitor

Similar to the hardware performance monitor (HPM), the E7 processor core supports a L2 per-
formance monitoring (L2PM) facility. It consists of a set of event-programmable counters and
their event selector registers. The registers are available to control the behavior of the counters.

The L2PM for each L2 Cache in the system resides within a 16 KiB segment of MMIO CSR
address space, starting at 9x0201_0000 (plus offset). The performance event selector and other
control registers are configured in M-mode, and the event-programmable counters can be read
in user mode.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 42

SiFive E76-MC Core Complex Manual
E7 RISC-V Core

3.10.1 Control Port Register Map

For each L2 Cache in the system, the 16 KiB region is partitioned as shown:

Offset CSR Group Size
0x0000 | L2 Cache control 4 KiB
0x1000 | Reserved 4 KiB
0x2000 | L2PM event control 4 KiB
0x3000 | L2PM event counters | 4 KiB

Table 10: L2PM Partition

3.10.2 L2PM Event Control

21G1.01.00

Depending on configuration options chosen during core creation, up to 64 Performance Event

Selectors (default = 6) are available

Offset | Bits | Access Description
0x2000 | 64 RwW L2pmevento
0x2008 | 64 RW L2pmevent1
0x2010 | 64 RW L2pmevent?2
0x2018 | 64 RW L2pmevent3
0x2020 | 64 RW L2pmevent4
0x2028 | 64 RW L2pmevent5
0x2030 | 64 RwW L2pmevent6
0x2038 | 64 RW L2pmevent?7
Ox21F8 | 64 RW L2pmevent63
0x2800 64 RW L2ClientFilter

The Performance Event Selectors (L2pmevent0-L2pmevent5) follow the definition of
mhpmevent* as defined in the RISC-V ISA, with the following differences:

e L2pmevent* is always 64-bits wide

Table 11: L2PM Event Control

¢ In RV32 systems, L2pmevent* entries can be accessed using the low and high 32-bits,

with the higher 32-bits of each L2pmevent aliased as L2pmevent*h.

L2 Counter Client Filter CSR (L2ClientFilter)

The L2 counter client filter register L2ClientFilter is a 64-bit WARL register that controls
which client’s performance events are excluded from incrementing the performance monitor

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

43

SiFive E76-MC Core Complex Manual

E7 RISC-V Core

21G1.01.00

counters. However, some events might not be attributed to a particular client in a specific imple-
mentation (for example, the L2 release event in SiFive’s L2 cache design).

L2 Performance Monitor Counters (L2pmcounter*)

The L2 Performance Monitor counters (L2pmcounter*), follow the definition of mhpmcounter* as
defined in the RISC-V ISA. They are WARL registers that support up to 64 bits of precision on
RV32 and RV64. The high 32-bits are aliased as L2pmcounter *h.

Offset | Bits | Access Description

0x3000 | 64 RO L2pmcounter®
0x3008 | 64 RO L2pmcounterl
0x3010 | 64 RO L2pmcounter?2
0x3018 | 64 RO L2pmcounter3
0x3020 | 64 RO L2pmcounter4
0x3028 | 64 RO L2pmcounter5s
0x3030 | 64 RO L2pmcounter6
0x3038 | 64 RO L2pmcounter?
Ox31F8 | 64 RO L2pmcounter63

Table 12: L2 Performance Monitor Counters

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 44

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

Offset | Bits | Access Description

0x3004 | 32 RO L2pmcounter®h
0x300C | 32 RO L2pmcounterih
0x3014 | 32 RO L2pmcounter2h
0x301C | 32 RO L2pmcounter3h
0x3024 | 32 RO L2pmcounter4h
0x302C | 32 RO L2pmcounter5h
0x3034 | 32 RO L2pmcounter6h
Ox303C | 32 RO L2pmcounter7h
Ox31FC | 32 RO L2pmcounter63h

Table 13: L2 Performance Monitor Counters,
32-Bit Access

Note

If a counter is not implemented, such as when there is no L2PM, both the counter and its
corresponding event selector are hard-wired to 0, meaning that the counter always returns
0.

3.10.3 Event Selector Registers

To control the event type to count, event selector CSRs L2pmevent® through L2pmevent5 are
used to program the corresponding event counters. These event selector CSRs are 32-bit
WARL registers.

The event selectors are partitioned into two fields; the lower 8 bits select an event class, and the
upper bits form a mask of events in that class.

. EventMask(ss:0] [EventClass |

Figure 11: Event Selector Fields

The counter increments if the event corresponding to any set mask bit occurs.

3.10.4 Event Selector Encodings

Table 14 describes the event selector encodings available. Events are categorized into two
classes based on the Event Class field encoded in L2pmeventX[7:0]. One or more events can
be programmed by setting the respective Event Mask bit for a given event class. An event

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 45

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

selector encoding of 0 means "count nothing". Multiple events will cause the counter to incre-
ment any time any of the selected events occur.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 46

SiFive E76-MC Core Complex Manual

E7 RISC-V Core

21G1.01.00

L2 Performance Monitor Event Register
Transaction Events, L2pmeventX[7:0]=1
Bits | Location Opcode Param Can use Description
clientFilter?
0 Inner PutFullData - Yes
1 Inner PutPartialData - Yes
2 Inner AtomicData - Yes
3 Inner Get - Yes
4 Inner Prefetch read Yes
5 Inner Prefetch write Yes
6 Inner AcquireBlock NtoB Yes
7 Inner AcquireBlock NtoT Yes
8 Inner AcquireBlock BtoT Yes
9 Inner AcquirePerm NtoT Yes
10 Inner AcquirePerm BtoT Yes
11 Inner Release ToB Yes
12 Inner Release TtoN Yes
13 Inner Release BtoN Yes
14 Inner ReleaseData ToB Yes
15 Inner ReleaseData TtoN Yes
16 Inner ReleaseData BtoN Yes
17 Outer ProbeBlock toT No
18 Outer ProbeBlock toB No
19 Outer ProbeBlock toN No
L2 Query Result Events, L2pmeventX[7:0]=2
Bits | Location Opcode Param Can use Description
clientFilter?
0 Inner PutFullData - Yes Hit L2
1 Inner PutPartialData - Yes Hit L2
2 Inner AtomicData - Yes Hit L2
3 Inner Get - Yes Hit L2
4 Inner Prefetch - Yes Hit L2
5 Inner AcquireBlock - Yes Hit L2
6 Inner AcquirePerm - Yes Hit L2
7 Inner Release - Yes Hit L2
8 Inner ReleaseData - Yes Hit L2
9 Outer Probe - No Hit L2
10 Inner PutFullData - Yes Hit L2,
"shared"
11 Inner PutPartialData - Yes Hit L2,
"shared"
12 Inner AtomicData - Yes Hit L2,
"shared"
Table 14: L2pmevent Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

47

SiFive E76-MC Core Complex Manual

E7 RISC-V Core

21G1.01.00

13 Inner Get - Yes Hit L2,
"shared"
14 Inner Prefetch - Yes Hit L2,
"shared"
15 Inner AcquireBlock - Yes Hit L2,
"shared"
16 Inner AcquirePerm - Yes Hit L2,
"shared"”
17 Outer Probe - No Hit L2,
"shared"
18 Outer Probe - No Hit L2,
"modified"
L2 Request Events, L2pmeventX[7:0]=3
Bits | Location Opcode Param Can use Description
clientFilter?
0 Outer AcquireBlock NtoB No L2 miss
1 Outer AcquireBlock NtoT No L2 miss
2 Outer AcquireBlock BtoT No L2 miss
3 Outer AcquirePerm NtoT No L2 miss
4 Outer AcquirePerm BtoT No L2 miss
5 Outer Release ToB No Eviction
6 Outer Release ToN No Eviction
7 Outer Release BtoN No Eviction
8 Outer ReleaseData ToB No Not applica-
ble
9 Outer ReleaseData TtoN No Dirty Evic-
tion
10 Outer ReleaseData BtoN No Not applica-
ble
11 Inner ProbeBlock toT No Code miss
hits other
harts
12 Inner ProbeBlock toB No Load miss
hits other
harts
13 Inner ProbeBlock toN No Store miss
hits other
harts
L2 Hardware Prefetcher Events, L2pmeventX[7:0]=4
Bits | Location Opcode Param Can use Description
clientFilter?
0 No Demand
miss hit L2
MSHR allo-
Table 14: L2pmevent Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

48

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

cated by
hint

Table 14: L2pmevent Register

Note: For the Location heading, "Inner" refers to the inner side of the L2 cache, i.e. transac-
tions from the core and Front Port. "Outer" refers to the other side of the L2 Cache, i.e. read/
write transactions from the L2 and probe requests from outside.

3.10.5 Setting up the pmclientmask Register

For each specific cluster configuration, the L2 may attach to different masters.

Master ID Description
0 Debug
1 AXl4 Front Port ID#0
2 AXIl4 Front Port ID#1
3 AXl4 Front Port ID#2
4 AXI14 Front Port ID#3
5 Hart O Fetch Unit
6 Hart 0 D-Cache
7 Hart O L2 Prefetcher
8 Hart 1 Fetch Unit
9 Hart 1 D-Cache
10 Hart 1 L2 Prefetcher
11 Hart 2 Fetch Unit
12 Hart 2 D-Cache
13 Hart 2 L2 Prefetcher
14 Hart 3 Fetch Unit
15 Hart 3 D-Cache
16 Hart 3 L2 Prefetcher

Table 15: Master IDs in the L2 Cache Controller

Note that the default value of pmclientmask is 0, therefore all clients’ events are counted.

3.10.6 Programming the L2pmevent registers

The following example shows the use of 6 performance counters:

// directory lookup events: L1 miss

*pmEventSelect® = 0x01 // Event Set 1

I
((ex01 <<6) | // innerAcquireBlockNtoB
(ox01 << 7) | // innerAcquireBlockNtoT
(ox01 << 8) | // innerAcquireBlockBtoT
(ox01 << 9) | // innerAcquirePermNtoT

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 49

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

(Ox01 << 10) // innerAcquirePermB2T
) << 8;
// directory lookup results: L1 miss hit L2
*pmEventSelectl = 0x02 | 7/ Event Set 2
((Ox01 << 5) | /7 innerAcquireBlock_Hit
(Ox01 << 6) // innerAcquirePerm_Hit
) << 8;
// directory lookup events: prefetch
*pmEventSelect2 = 0x01 | /7 Event Set 1
((exe1 << 4) | // innerPrefetchRead
(6x01 << 5) // innerPrefetchwWrite
) << 8;
// prefetch hits L2
*pmEventSelect3 = 0x02 | 7/ Event Set 2
((Ox01 << 4) // innerPrefetch_Hit
) << 8;

// L1 request misses L2
*pmEventSelect4 = 0x03
((6x01 << 0)

// Event Set3
// outerAcquireBlockNtoB

(ox01 << 1) // outerAcquireBlockNtoT
(Ox01 << 2) // outerAcquireBlockBtoT
(ox01 << 3) // outerAcquirePermNtoT
(Ox01 << 4) // outerAcquirePermBtoT
) << 8;
3.11 Ports

This section describes the Port interfaces to the E7 core.

3.11.1 Front Port

The Front Port can be used by external masters to read from and write into the memory system
utilizing any port in the Core Complex. The ITIM can also be accessed through the Front Port.

If a Front Port access targets the Memory Port, a coherency manager is reponsible for maintain-
ing coherency with the L1 and L2 caches. A read access can be returned directly from the L1 or
L2 cache without generating an external bus access. If a write from the Front Port targets a
location in the L1 data cache, it results in the line being evicted and invalidated. The write will
then allocate to the L2 cache.

Any Front Port access that targets the Memory Port and results in an L1 and L2 cache miss will
allocate to the L2 cache.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 50

SiFive E76-MC Core Complex Manual 21G1.01.00
E7 RISC-V Core

The E76-MC Core Complex User Guide describes the implementation details of the Front Port.

Note

Logic in the core prevents non-debug-mode code from accessing the debug region. How-
ever, this logic does not intercept accesses from the Front Port. This means that it is possi-
ble for Front Port accesses to interfere with a debug session by writing to various offsets
within the debug region. To work around this, do not access the debug module memory
region via the Front Port.

3.11.2 Memory Port

The Memory Port is used to interface with memory that offers the highest performance for the
E76-MC Core Complex, such as DDR. It supports cacheable accesses for data and instructions.

Consult Section 4.1 for further information about the Memory Port and its Physical Memory
Attributes.

See the E76-MC Core Complex User Guide for a description of the Memory Port implementa-
tion in the E76-MC Core Complex.

3.11.3 Peripheral Port

The Peripheral Port is used to interface with lower speed peripherals and also supports code
execution. When a device is attached to the Peripheral Port, it is expected that there are no
other masters connected to that device.

Consult Section 4.1 for further information about the Peripheral Port and its Physical Memory
Attributes.

See the E76-MC Core Complex User Guide for a description of the Peripheral Port implementa-
tion in the E76-MC Core Complex.

3.11.4 System Port

The System Port is used to interface with lower performance memory, like SRAM, memory-
mapped I/0 (MMIO), and higher speed peripherals. The System Port also supports code execu-
tion.

Consult Section 4.1 for further information about the System Port and its Physical Memory
Attributes.

See the E76-MC Core Complex User Guide for a description of the System Port implementation
in the E76-MC Core Complex.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 51

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 4

Physical Memory Attributes and Memory
Map

This chapter describes the E76-MC Core Complex physical memory attributes and memory
map.

4.1 Physical Memory Attributes Overview

The memory map is divided into different regions covering on-core-complex memory, system
memory, peripherals, and empty holes. Physical memory attributes (PMAS) describe the proper-
ties of the accesses that can be made to each region in the memory map. These properties
encompass the type of access that may be performed: execute, read, or write. As well as other
optional attributes related to the access, such as supported access size, alignment, atomic
operations, and cacheability.

RISC-V utilizes a simpler approach than other processor architectures in defining the attributes
of memory accesses. Instead of defining access characteristics in page table descriptors or
memory protection logic, the properties are fixed for memory regions or may only be modified in
platform-specific control registers. As most systems don't require the ability to modify PMAS,
SiFive cores only support fixed PMAs, which are set at design time. This results in a simpler
design with lower gate count and power savings, and an easier programming interface.

External memory map regions are accessed through a specific port type and that port type is
used to define the PMAs. The port types are Memory, Peripheral, and System. Memory map
regions defined for internal memory and internal control regions also have a predefined PMA
based on the underlying contents of the region.

The assigned PMA properties and attributes for E76-MC Core Complex memory regions are
shown in Table 16 and Table 17 for external and internal regions, respectively.

The configured memory regions of the E76-MC Core Complex are listed with their attributes in
Table 18.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 52

SiFive E76-MC Core Complex Manual 21G1.01.00
Physical Memory Attributes and Memory Map

Port Type Access Properties Attributes
Memory Port Read, Write, Execute | Atomics+LR/SC, Data Cacheable, Instruction
Cacheable, Instruction Speculation
Peripheral Port Read, Write, Execute | Atomics, Instruction Cacheable
System Port Read, Write, Execute | Instruction Cacheable

Table 16: Physical Memory Attributes for External Regions

Region Access Properties Attributes

CLINT Read, Write Atomics

Data Local Store Read, Write, Execute | Atomics

Debug None N/A

Error Device Read, Write, Execute | Atomics

ITIM Read, Write, Execute | Atomics, Instruction Speculation
L2 Cache Controller Read, Write Atomics

L2 LIM Read, Write, Execute | Atomics

L2 Prefetcher Read, Write Atomics

L2 Zero Device Read, Write, Execute | Atomics, Instruction Cacheable
PLIC Read, Write Atomics

Reserved None N/A

Table 17: Physical Memory Attributes for Internal Regions

All memory map regions support word, half-word, and byte size data accesses.

Atomic access support enables the RISC-V standard Atomic (A) Extension for atomic instruc-
tions. These atomic instructions are further documented in Section 3.6 for the E7 core. The
load-reserved (LR) and store-conditional (SC) instructions are only supported on the data
cacheable region, marked in Table 16 with "Atomics+LR/SC".

No region supports unaligned accesses. An unaligned access will generate the appropriate trap:
instruction address misaligned, load address misaligned, or store/AMO address misaligned.

The Physical Memory Protection unit is capable of controlling access properties based on
address ranges, not ports. It has no control over the attributes of an address range, however.

Note

The Debug and Error Device regions have special behavior. The Debug region is reserved
for use from a Debugger, and all accesses to it from the core in non-Debug mode will trap.
The Error Device will also trap all accesses, as described in Chapter 10.

4.2 Memory Map

The memory map of the E76-MC Core Complex is shown in Table 18.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 53

SiFive E76-MC Core Complex Manual
Physical Memory Attributes and Memory Map

Base Top PMA Description
OXO0000_0000 | OXx0000_OFFF Debug
Ox0000_1000 | OXxO000_2FFF Reserved
Ox0000_3000 | 6x0000_3FFF | RWX A | Error Device
OXx0000_4000 | 0x017F_FFFF Reserved
0x0180_0000 | Ox0180_7FFF | RWX A | Hart O ITIM
0x0180_8000 | OXx0180_FFFF | RWX A | Hart 1 ITIM
0x0181_0000 | 06x0181_7FFF | RWX A | Hart 2 ITIM
0x0181_8000 | Ox0181_FFFF | RWX A | Hart 3ITIM
0x0182_0000 | Ox018F_FFFF Reserved
0x0190_0000 | 6x0190_7FFF | RWX A | Hart O Data Local Store
0x0190_8000 | Ox0190_FFFF | RWX A | Hart 1 Data Local Store
0x0191_006000 | O6x0191_7FFF | RWX A | Hart 2 Data Local Store
0x0191_8000 | Ox0191_FFFF | RWX A | Hart 3 Data Local Store
0x0192_0000 | OXO1FF_FFFF Reserved
0x0200_0000 | 0x0200_FFFF | RW A | CLINT
0x0201_0000 | 6x0201_3FFF | RW A | L2 Cache Controller
0x0201_4000 | Ox0202_FFFF Reserved
0x0203_0000 | Ox0203_1FFF | RWw A | Hart O L2 Prefetcher
0x0203_2000 | Ox0203_3FFF | RW A | Hart 1 L2 Prefetcher
0x0203_4000 | Ox0203_5FFF | RW A | Hart 2 L2 Prefetcher
0x0203_6000 | Ox0203_7FFF | RW A | Hart 3 L2 Prefetcher
0x0203_8000 | OXO7FF_FFFF Reserved
Ox0800_0000 | OXO807_FFFF | RWX A | L2 LIM
0x0808_0000 | OXO9FF_FFFF Reserved
OX0A00_0000 | OXOAO7_FFFF | RWXI A | L2 Zero Device
OXOA08_0000 | OXOBFF_FFFF Reserved
Ox0CO0_0000 | OXOC3F_FFFF | RW A | PLIC
0x0C40_0000 | OX1FFF_FFFF Reserved
0x2000_0000 | Ox3FFF_FFFF | RWXI A | Peripheral Port (512 MiB)
0x4000_0000 | OX5FFF_FFFF | RWXI System Port (512 MiB)
0X6000_0000 | OX7FFF_FFFF Reserved
0x8000_0000 | OX9FFF_FFFF | RWXIDA | Memory Port (512 MiB)

OXAOO0_0000

OXFFFF_FFFF

Reserved

Table 18: E76-MC Core Complex Memory Map. Physical Memory
Attributes: R—Read, W-Write, X—Execute, I-Instruction Cacheable,
D—-Data Cacheable, A—Atomics

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

21G1.01.00

54

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 5

Programmer’s Model

The E76-MC Core Complex implements the 32-bit RISC-V architecture. The following chapter
provides a reference for programmers and an explanation of the extensions supported by
RV32IMAFCB.

This chapter contains a high-level discussion of the RISC-V instruction set architecture and
additional resources which will assist software developers working with RISC-V products. The
E76-MC Core Complex is an implementation of the RISC-V RV32IMAFCB architecture, and is
guaranteed to be compatible with all applicable RISC-V standards. RV32IMAFCB can emulate
almost any other RISC-V ISA extension.

5.1 Base Instruction Formats

RISC-V base instructions are fixed to 32 bits in length and must be aligned on a four-byte
boundary in memory. RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers
at the same position in all formats to simplify decoding, with the exception of the 5-bit immedi-
ates used in CSR instructions.

The various formats are described in Table 19 below.

Format | Description
R Format for register-register arithmetic/logical operations.
[Format for register-immediate ALU operations and loads.
S Format for stores.
B Format for branches.
U Format for 20-bit upper immediate instructions.
J Format for jumps.
Table 19: Base Instruction Formats

31v T T T v25 24v T T v20 19v T T v15 14v v12 llv T T v7 6v T T VO

funct7 rs2 rsl funct3 rd opcode

Figure 12: R-Type

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 55

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

31V T T T T T T V20 19V T T V15 14V V12 11! T T V7 6V T T VO

—— —
imm[11:0] rsl funct3 rd opcode
PR T L M L M S

Figure 13: |-Type

31' . . '25 24' I '20 19' I '15 14' '12 11' I 7 6 . . '0

imm[11:5] rs2 rsl funct3 imm[4:0] opcode

Figure 14: S-Type

31 30 25 24 20 19 15 14 12 11 8 71 6 0

~ T T T T T T T T T T T T T T T T T T — T T T T T T

— —

B imm[10:5] rs2 rsl funct3 imm[4:1] = opcode

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E 1 1 1 1 1 1
Figure 15: B-Type

31 T T T T T T T T T T T T T T T T T T T 12 llv T T T 7 6 T T T T T T 0

imm[31:12] rd opcode

Figure 16: U-Type

31 30 21 20 19 12 11 7 6 0

o T T T T T T T — T T T T T T T T T T T T T T T T

o~ —

B imm[10:1] B imm[19:12] rd opcode

E 1 1 1 1 1 1 1 1 1 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 17: J-Type

The opcode field partially specifies an instruction, combined with funct7 + funct3 which
describe what operation to perform. Each register field (rs1, rs2, rd) holds a 5-bit unsigned inte-
ger (0-31) corresponding to a register number (x0 - x31). Sign-extension is one of the most criti-
cal operations on immediates (particularly for XLEN>32), and in RISC-V the sign bit for all
immediates is always held in bit 31 of the instruction to allow sign-extension to proceed in paral-
lel with instruction decoding.

5.2 | Extension: Standard Integer Instructions

This section discusses the standard integer instructions supported by RISC-V. Integer computa-
tional instructions don’t cause arithmetic exceptions.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 56

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.2.1 R-Type (Register-Based) Integer Instructions

funct?7 funct3 opcode | Instruction
00000000 | rs2 | rs1 | 000 rd | 0110011 | ADD
01000000 | rs2 | rs1 | 000 rd | 0110011 | SUB
00000000 | rs2 | rs1 | 001 rd | 0110011 | SLL
00000000 | rs2 | rs1 | 010 rd | 0110011 | SLT
00000000 | rs2 | rs1 | 011 rd | 0110011 | SLTU
00000000 | rs2 | rs1 | 100 rd | 0110011 | XOR
00000000 | rs2 | rs1 | 101 rd | 0110011 | SRL
01000000 | rs2 | rs1 | 101 rd | 0110011 | SRA
00000000 | rs2 | rs1 | 110 rd | 0110011 | OR
00000000 | rs2 | rs1 | 111 rd | 0110011 | AND

Table 20: R-Type Integer Instructions

Instruction Description

ADD rd, rs1, rs2 Performs the addition of rs1 and rs2, result stored in rd.

SUB rd, rs1, rs2 Performs the subtraction of rs2 from rsi, result stored in rd.

SLL rd, rsi, rs2 Logical left shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of rs2.

SLT rd, x0, rs2 Signed and compare sets rd to 1 if rs2 is not equal to zero, oth-
erwise sets rd to zero.

SLTU rd, x0, rs2 Unsigned compare sets rd to 1 if rs2 is not equal to zero, other-
wise sets rd to zero.

SRL rd, rsi, rs2 Logical right shift (zeros are shifted into the lower bits) shift
amount is encoded in the lower 5 bits of rs2.

SRA rd, rs1, rs2 Arithmetic right shift, shift amount is encoded in the lower 5 bits
of rs2.

OR rd, rsi, rs2 Bitwise logical OR.

AND rd, rsi, rs2 Bitwise logical AND.

XOR rd, rsi, rs2 Bitwise logical XOR.

Table 21: R-Type Integer Instruction Description

Below is an example of an ADD instruction.

add x18, x19, x10

2524 02019 0 1514 1211 7 6 0000000
’ ADD ‘ rs2=10 ‘ rsl=19 ‘ ADD ‘ rd=18 ‘ Reg-Reg OP
o o o o 0o 0001 01 011 001110 0UO0O1 0 011 0011 00 1 1

Figure 18: ADD Instruction Example

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 57

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.2.2 I-Type Integer Instructions

For I-Type integer instruction, one field is different from R-format. rs2 and funct7 are replaced

by the 12-bit signed immediate, imm[11:0], which can hold values in range [-2048, +2047]. The
immediate is always sign-extended to 32-bits before being used in an arithmetic operation. Bits

[31:12] receive the same value as bit 11.

imm func3 opcode | Instruction
imm[11:0] rs1 | 000 rd | 0010011 | ADDI
imm[11:0] rs1 | 010 rd | 0010011 | SLTI
imm[11:0] rsl | 011 rd | 0010011 | SLTIU
imm[11:0] rs1l | 100 rd | 0010011 | XORI
imm[11:0] rsl | 110 rd | 0010011 | ORI
imm[11:0] rsl | 111 rd | 0010011 | ANDI
00000000 | shamnt | rs1 | 001 rd | 0010011 | SLLI
00000000 | shamnt | rs1 | 101 rd | 0010011 | SRLI
01000000 | shamnt | rs1 | 001 rd | 0010011 | SRAI

Table 22: |-Type Integer Instructions

One of the higher-order immediate bits is used to distinguish "shift right logical" (SRLI) from
"shift right arithmetic" (SRAI).

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 58

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction | Description

ADDI Adds the sign-extended 12-bit immediate to register rsi. Arithmetic overflow is
ignored and the result is simply the low 32-bits of the result. ADDI rd, rs1, 0 is
used to implement the MV rd, rs1 assembler pseudoinstruction.

SLTI Set less than immediate. Places the value 1 in register rd if register rsi is less
than the sign extended immediate when both are treated as signed numbers,
else 0 is written to rd.

SLTIU Compares the values as unsigned numbers (i.e., the immediate is first sign-
extended to 32-bits then treated as an unsigned number). Note: SLTIU rd, rs1,
1 sets rd to 1 if rs1 equals zero, otherwise sets rd to 0 (assembler pseudo
instruction SEQZ rd, rs).

XORI Bitwise XOR on register rs1 and the sign-extended 12-bit immediate and place
the result in rd.

ORI Bitwise OR on register rs1 and the sign-extended 12-bit immediate and place
the resultin rd.

ANDI Bitwise AND on register rsi1 and the sign-extended 12-bit immediate and place
the resultin rd.

SLLI Shift Left Logical. The operand to be shifted is in rsi1, and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRLI Shift Right Logical. The operand to be shifted is in rs1, and the shift amount is
encoded in the lower 5 bits of the I-immediate field.

SRAI Shift Right Arithmetic. The operand to be shifted is in rsi, and the shift amount

is encoded in the lower 5 bits of the I-immediate field (the original sign bit is
copied into the vacated upper bits).

Table 23: |-Type Integer Instruction Description

Shift-by-immediate instructions only use lower 5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions).

Below is an example of an ADDI instruction.

addi x15, x1, -50

Figure 19: ADDI Instruction Example

5.2.3 I-Type Load Instructions

For I-Type load instructions, a 12-bit signed immediate is added to the base address in register
rs1 to form the memory address. In Table 24 below, funct3 field encodes size and signedness
of load data.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 59

SiFive E76-MC Core Complex Manual 21G1.01.00

Programmer’s Model

imm func3 opcode Instruction
imm[11:0] | rs1 | 000 rd | 00000011 | LB
imm[11:0] | rs1 | 001 rd | 00000011 | LH
imm[11:0] | rs1 | 010 rd | 00000011 | LW
imm[11:0] | rs1 | 100 rd | 00000011 | LBU
imm[11:0] | rs1 | 101 rd | 00000011 | LHU
Table 24: |-Type Load Instructions
Instruction Description
LB rd, rsi, imm Load Byte, loads 8 bits (1 byte) and sign-extends to fill destina-
tion 32-bit register.
LH rd, rs1, imm Load Half-Word. Loads 16 bits (2 bytes) and sign-extends to fill
destination 32-bit register.
LW rd, rsi, imm Load Word, 32 bits.
LBU rd, rs1, imm Load Unsigned Byte (8-bit).
LHU rd, rs1, imm Load Unsigned Half-Word, which zero-extends 16 bits to fill des-
tination 32-bit register.
Table 25: |-Type Load Instruction Description

Below is an example of a LW instruction.

lw x14, 8(x2)

_ 00000000 2019 1514 1211 = = 7 6 00
’ imm=+8 rsl=2 ‘ Lw rd=14 ‘ LOAD
0o o0 o0 0o o0 0O 01 00 00 0011 0010 011100 00 00 1 1

Figure 20: LW Instruction Example

5.2.4 S-Type Store Instructions

Store instructions need to read two registers: rsi for base memory address and rs2 for data to
be stored, as well as an immediate offset. The effective byte address is obtained by adding reg-
ister rs1 to the sign-extended 12-bit offset. Note that stores don’t write a value to the register
file, as there is no rd register used by the instruction. In RISC-V, the lower 5 bits of immediate
are moved to where the rd field was in other instructions, and the rs1/rs2 fields are kept in
same place. The registers are kept always in the same place because a critical path for all oper-
ations includes fetching values from the registers. By always placing the read sources in the
same place, the register file can read the registers without hesitation. If the data ends up being
unnecessary (e.g. I-Type), it can be ignored.

2524 2019 001514 12 11 7 6 0
’ imm[11:5] ‘ rs2 ‘ rsl funct3 ‘ imm[4:0]
offset[11:5] src base width offset[4:0]

Figure 21: Store Instructions

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 60

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

imm func3 | imm opcode Instruction
imm[11:5] | rs2 | rs1 | 000 imm[4:0] | 01000011 | SB
imm[11:5] | rs2 | rs1 | 001 imm[4:0] | 01000011 | SH
imm[11:5] | rs2 | rs1 | 010 imm[4.0] | 01000011 | SW

Table 26: S-Type Store Instructions

Instruction Description

SB rs2, imm[11:0](rs1) | Store 8-bit value from the low bits of register rs2 to memory.
SH rs2, imm[11:0](rs1) | Store 16-bit value from the low bits of register rs2 to memory.
SW rs2, Store 32-bit value from the low bits of register rs2 to memory.
imm[11:0](rs1)

Table 27: S-Type Store Instruction Description

Below is an example SW instruction.

sw x14, 8(x2)

31 . 25 24 . 20 19 . 15 14 12 11 . 7 6 . 0
’ offset[11:5] ‘ rs2=14 ‘ rsl=2 ‘ sw ‘ offset[4:0] ‘ STORE
o o o o0 o0 o0 o0 01110 0 0O0OT1 0 010 01 0 0 O0OO0OT1UO0 0 0 1 1

Figure 22: SW Instruction Example

5.2.5 Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the
jump instruction to form the jump target address. Jumps can therefore target a +1 MiB range.
JAL stores the address of the instruction following the jump (pc+4) into register rd. The stan-
dard software calling convention uses x1 as the return address register and x5 as an alternate
link register.

31 30 21 20 19 12 11 7 6 0

’iZO‘ imm[10:1] ‘ill‘ imm[19:12] ‘ rd ‘ opcode ‘
offset[20:1] dest JAL

Figure 23: JAL Instruction

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then set-
ting the least-significant bit of the result to zero. The address of the instruction following the
jump (pc+4) is written to register rd. Register X0 can be used as the destination if the result is
not required.

31' '20 19' . . '15 14' '12 11' . . '7 6' '0

’ . L ir‘nm[‘ll:O‘]) L) ‘) ‘rsl‘) ‘ fynct‘3 ‘) ‘rd‘) ‘ L opcoqe L ‘

offset[11:0] base 0 dest JALR

Figure 24: JALR Instruction

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 61

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Both JAL and JALR instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary.

Instruction Description
JAL rd, imm[20:1] Jump and link
JALR rd, rs1, imm[11:0] | Jump and link register

Table 28: J-Type Instruction Description

5.2.6 Conditional Branches

All branch instructions use the B-Type instruction format. The 12-bit immediate represents val-
ues -4096 to +4094 in 2-byte increments. The offset is sign-extended and added to the address
of the branch instruction to give the target address. The conditional branch range is +4 KiB.

313 = 2524 2019 1514 12 11 = 8 7 6 00
lilz‘ imm[10:5] ‘ rs2 rsl funct3 ‘ imm[4:1] ‘ill‘ opcode ‘
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGE[U] offset[11,4:1] BRANCH

Figure 25: Branch Instructions

imm func3 | imm opcode | Instruction
imm[12,10:5] | rs2 | rs1 | 000 imm[4:1,11] | 110011 | BEQ
imm[12,10:5] | rs2 | rs1 | 001 imm[4:1,11] | 110011 | BNE
imm[12,10:5] | rs2 | rs1 | 100 imm[4:1,11] | 110011 | BLT
imm[12,10:5] | rs2 | rs1 | 101 imm[4:1,11] | 110011 | BGE
imm[12,10:5] | rs2 | rs1 | 110 imm[4:1,11] | 110011 | BLTU
imm[12,10:5] | rs2 | rs1 | 111 imm[4:1,11] | 110011 | BGEU

Table 29: B-Type Instructions

Instruction Description
BEQ rsi, rs2, Take the branch if registers rsi1 and rs2 are equal.
imm[12:1]

BNE rs1, rs2, imm[12:1] | Take the branch if registers rs1 and rs2 are unequal.
BLT rs1, rs2, imm[12:1] | Take the branch if rs1 is less than rs2.

BGE rs1, rs2, Take the branch if rs1 is greater than or equal to rs2.
imm[12:1]

BLTU rs1, rs2, Take the branch if rs1 is less than rs2 (unsigned).
imm[12:1]

BGEU rs1, rs2, Take the branch if rs1 is greater than or equal to rs2
imm[12:1] (unsigned).

Table 30: B-Type Instruction Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 62

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

ISA Base Instruction | Pseudoinstruction | Description
BEQ rs, x0, offset BEQZ rs, offset Take the branch if rs is equal to zero.

Table 31: RISC-V Base Instruction to Assembly Pseudoinstruction Example

Note

Software should be optimized such that the sequential code path is the most common path,
with less-frequently taken code paths placed out of line. Software should also assume that
backward branches will be predicted taken and forward branches as not taken, at least the
first time they are encountered. Dynamic predictors should quickly learn any predictable
branch behavior.

5.2.7 Upper-immediate Instructions

0000000000001 7 6_ 0

’ imm[31:12] ‘ rd ‘ opcode
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

Figure 26: Upper-Immediate Instructions

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI
places the U-immediate value in the top 20 bits of the destination register rd, filling in the lowest
12 bits with zeros. Together with an ADDI to set low 12 bits, can create any 32-bit value in a reg-
ister using two instructions (LUI/ADDI).

For example:
LUI x10, 0x87654 # x10 = 0x8765_4000
ADDI x10, x10, 0x321 # x10 = 0x8765_4321

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest 12 bits with
zeros, and adds this offset to the address of the AUIPC instruction, then places the result in reg-
ister rd.

5.2.8 Memory Ordering Operations

31 2827 26 252423 22212019 = 1514 12 11 = 7 6 = 0
’) fm) ‘ Pl ‘PO‘ PR‘PW‘ Sl ‘SO‘ SR‘SW‘) ‘rsl‘) ‘ fynct‘3 ‘)) rd‘) L opcoqe)
FM predecessor successor 0 FENCE 0 MISC-MEM

Figure 27: FENCE Instructions

The FENCE instruction is used to order device /O and memory accesses as viewed by other
RISC-V harts and external devices or coprocessors. Any combination of device input (1), device

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 63

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

output (O), memory reads (R), and memory writes (W) may be ordered with respect to any com-
bination of the same. These operations are discussed further in Section 5.12.

5.2.9 Environment Call and Breakpoints

SYSTEM instructions are used to access system functionality that might require privileged access
and are encoded using the I-type instruction format. These can be divided into two main
classes: those that atomically read-modify-write control and status registers (CSRs), and all
other potentially privileged instructions.

5.2.10 NOP Instruction
31 T T T T T T T T T T T 20 19 T T T T 15 14 T T 12 11 T T T T 7 6 T T T T T T 0
’ imm[11:0] rsl ‘ funct ‘ rd opcode
S e T —— T Ve

Figure 28: NOP Instructions

The NOP instruction does not change any architecturally visible state, except for advancing the
pc and incrementing any applicable performance counters. NOP is encoded as ADDI x0, x0, 0.

5.3 M Extension: Multiplication Operations

31 25 24 20 19 15 14 12 11 7 6 0
’ funct?7 ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode

MULDIV multiplier multiplicand MUL/MULHI[[S]U] dest OP

MULDIV multiplier multiplicand MULW dest OP-32

Figure 29: Multiplication Operations

Instruction Description

MUL rd, rsi, rs2 Multiplication of rs1 by rs2 and places the lower 32-bits in the
destination register.

MULH rd, rs1, rs2 Multiplication that return the upper 32-bits of the full 2x32-bit
product.

MULHU rd, rsi, rs2 Unsigned multiplication that return the upper 32-bits of the full
2x32-bit product.

MULHSU rd, rsi, rs2 Signed rs1 multiple unsigned rs2 that return the upper 32-bits of
the full 2x32-bit product.

Table 32: Multiplication Operation Description

Combining MUL and MULH together creates one multiplication operation.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 64

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.3.1 Division Operations

31v T T T T v25 24v T T v20 19v T T v15 14v v12 11v T T T 7 6 T T T T T T 0
’ funct7 rs2 rsl ‘ funct3 rd opcode
MULDIV divisor dividend DIV[U]/REM[U] dest OP
MULDIV divisor dividend DIV[UJW/REM[U]W dest OP-32

Figure 30: Division Operations

Instruction Description

DIV rd, rsi1, rs2 32-bits by 32-bits signed division of r1 by rs2 rounding towards
Zero.

DIVU rd, rs1, rs2 32-bits by 32-bits unsigned division of r1 by rs2 rounding
towards zero.

REM rd, rsi, rs2 Remainder of the corresponding division.

REMU rd, rsi, rs2 Unsigned remainder of the corresponding division.

REMW rd, rsi, rs2 Singed remainder.

REMUW rd, rsi, rs2 Unsigned remainder sign-extend the 32-bit result to 64 bits,
including on a divide by zero.

MULDIV rd, rs1, rs Multiply Divide.

Table 33: Division Operation Description

Combining DIV and REM together creates one division operation.

5.4 A Extension: Atomic Operations

Atomic operations are defined as operations that automatically read-modify-write memory to
support sychronization between multiple RISC-V harts running in the same memory space.

5.4.1 Atomic Load-Reserve and Store-Conditional Instructions

31' . . '27 26 25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' '0
’ funct5 aq| rl ‘ rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode
LR.W/D ordering 0 addr width dest AMO
SC.w/D ordering src addr width dest AMO

Figure 31: Atomic Operations

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 65

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction | Description
LR.W Load Reserve.

Loads a word from the address in rsi, places the sign-extended value in rd,
and registers a reservation set—a set of bytes that subsumes the bytes in the
addressed word.

SC.W Store Conditional

Conditionally writes a word in rs2 to the address in rs1: the SC.W succeeds
only if the reservation is still valid and the reservation set contains the bytes
being written. If the SC.W succeeds, the instruction writes the word in rs2 to
memory, and it writes zero to rd. If the SC.W fails, the instruction does not
write to memory, and it writes a nonzero value to rd. Executing an SC.W
instruction invalidates any reservation held by this hart.

Table 34: Atomic Load-Reserve and Store-Conditional Instruction Description

Note

Only cores with data caches support the LR/SC instructions used by the A-Extension.
Cores with DTIMs will NOT.

5.4.2 Atomic Memory Operations (AMOSs)

The atomic memory operation (AMO) instructions perform read-modify-write operations for mul-
tiprocessor synchronization. These AMO instructions atomically load a data value from the
address in rsi, place the value into register rd, apply a binary operator to the loaded value and
the original value in rs2, then store the result back to the address in rs1.

31' . . '27 26 25 24' . . '20 19' . . '15 14' '12 11' . . '7 6' '0
’ funct5 aq| rl ‘ rs2 rsl funct3 rd opcode
AMOSWAP.W/D ordering src addr width dest AMO
AMOADD.W/D ordering src addr width dest AMO
AMOAND.W/D ordering src addr width dest AMO
AMOOR.W/D ordering src addr width dest AMO
AMOXOR.W/D ordering src addr width dest AMO
AMOMAX[U].W/Dordering src addr width dest AMO
AMOMIN[U].W/D ordering src addr width dest AMO

Figure 32: Atomic Memory Operations

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 66

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction Description

AMOSWAPW/D | Word / doubleword swap.
AMOADD.W/D Word / doubleword add.
AMOAND.W/D Word / doubleword and.

AMOOR.W/D Word / doubleword or.

AMOXOR.W/D Word / doubleword xor.

AMOMIN.W/D Word / doubleword minimum.
AMOMINU.W/D | Unsigned word / doubleword minimum.
AMOMAX.W/D Word / doubleword maximum.
AMOMAXU.W/D | Unsigned word / doubleword maximum.

Table 35: Atomic Memory Operation Description

5.5 F Extension: Single-Precision Floating-Point
Instructions

The F Extension implements single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard. The F Extension adds 32 floating-point registers,
fo—f31, each 32 bits wide, and a floating-point control and status register fcsr. Floating-point
load and store instructions transfer floating-point values between registers and memory, and
instructions to transfer values to and from the integer register file are also provided.

5.5.1 Floating-Point Control and Status Registers

Floating-Point Control and Status Register, fcsr, is a RISC-V control and status register (CSR).
The register selects the dynamic rounding mode for floating-point arithmetic operations and
holds the accrued exception flags.

87 5 4 3 2 1 0
| Reserved | rm [nv[pz[or|ur[nx]

Rounding Mode (fflags)
Accrued Exceptions

Figure 33: Floating-Point Control and Status Register

Flag Mnemonic | Flag Meaning
NV Invalid Operation
Dz Divide by Zero
OF Overflow
UF Underflow
NX Inexact

Table 36: Accrued Exception Flags

The fcsr register can be read and written with the FRCSR and FSCSR instructions. The FRRM
instruction reads the Rounding Mode field frm. FSRM swaps the value in frm with an integeter
register. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception Flags
field fflags.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 67

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.5.2 Rounding Modes

Floating-point operations use either a static rounding mode encoded in the instruction, or a
dynamic rounding mode held in frm. A value of 111 in the instruction’s rm field selects the
dynamic rounding mode held in frm. If frm is set to an invalid value (101-111), any subsequent
attempt to execute a floating-point operation with a dynamic rounding mode will raise an illegal
instruction exception. Some instructions, including widening conversions, have the rm field, but
are nevertheless unaffected by the rounding mode. Software should set their rm field to RNE
(000).

Mode | Mhemonic | Meaning
000 RNE Round to Nearest, ties to Even.
001 RTZ Round towards Zero.
010 RDN Round Down (towards -).
011 RUP Round Up (towards + o).
100 RMM Round to Nearest, ties to Max Magnitude.
101 Invalid. Reserved for future use.
110 Invalid. Reserved for future use.
111 DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding
Mode register, Invalid.

Table 37: Floating-Point Rounding Modes

5.5.3 Single-Precision Floating-Point Load and Store Instructions

31 20 19 15 14 12 11 7 6 0
| imm[11:0] \ rs1 | width | rd \ opcode
offset[11:0] base w dest LOAD-FP

Figure 34: Single-Precision FP Load Instruction

31v T T T T v25 24v T T v20 19v T T T 15 14v T 12 11v T T T 7 6 T T T T T T 0
imm[11:5] ‘ rs2 ‘ rsl ‘ width ‘ imm[4:0] ‘ opcode
offset[11:5] src base w offset[4:0] STORE-FP

Figure 35: Single-Precision FP Store Instruction

Instruction Operation Description
FLW rd, rs1, imm flrd] = M[x[rs1] + Loads a single-precision floating-
sext(offset)][31:0] point value from memory into float-
ing-point register rd.
FSW imm, rsi, rs2 M[x[rsl1] + Stores a single-precision value
sext(offset)] = from floating-point register rs2 to
flrs2][31:0] memory.

Table 38: Single-Precision FP Load and Store Instructions Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 68

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.5.4 Single-Precision Floating-Point Computational Instructions

31 27 26 25 24 2019 1514 12 11 7 6 0
l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
FADD/FSUB S src2 srcl RM dest OP-FP
FMUL/FDIV S src2 srcl RM dest OP-FP
FSQRT S 0 src RM dest OP-FP
FMIN-MAX S src2 srcl MIN/MAX dest OP-FP

Figure 36: Single-Precision FP Computational Instructions

31' N '27 26'25 24' N '20 19' N '15 14' '12 11' N '7 6 - 'O
.rs3. . | frpt | . .rszl . | . sl | m. | . .rd. . | L opcoq|e L
src3 S src2 srcl RM dest F[IN]JMADD/F[NIMSUB

Figure 37: Single-Precision FP Fused Computational Instructions

Instruction Operation Description

FADD.S rd, rs1,rs2 flrd] = f[rs1] + Single-precision floating-point
flrs2] addition.

FSUB.S rd, rsi,rs2 f[rd] = f[rs1] - Single-precision floating-point
flrs2] subtraction.

FMUL.S rd, rs1,rs2 f[rd] = f[rs1] x Single-precision floating-point
flrs2] multiplication.

FDIV.S rd, rs1,rs2 flrd] = f[rsi] =+ Single-precision floating-point
flrs2] division.

FSORT.S rd, rs1 flrd] = Vf[rsi] Single-precision floating-point

square root.

FMIN.S rd, rs1,rs2 f[rd] = min(f[rs1], Single-precision floating-point
flrs2]) minimum-number.

FMAX.S rd, rsi1,rs2 flrd] = max(f[rs1i], Single-precision floating-point
flrs2]) maximum-number.

FMADD.S rd, rs1,rs2,rs3 flrd] = (f[rs1] x Single-precision floating-point
f[rs2]) + f[rs3] multiply and add.

FMSUB.S rd, rs1,rs2,rs3 flrd] = (f[rs1] x Single-precision floating-point
flrs2]) - f[rs3] multiply and subtract.

FNMADD.S rd, rs1,rs2,rs3 | f[rd]= -(f[rs1] x Single-precision floating-point
f[rs2]) + f[rs3] multiply, negate, and add.

FNMSUB.S rd, rs1,rs2,rs3 | f[rd]= -(f[rs1] x Single-precision floating-point
flrs2]) - f[rs3] multiply, negate, and subtract.

Table 39: Single-Precision FP Computational Instructions Description

5.5.5 Single-Precision Floating-Point Conversion and Move Instructions

Single-Precision Floating-Point Conversion Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

| funct5 | fmt | rs2 | rsl | rm | rd | opcode
FCVT.int.S S WIU]/L[U] src RM dest OP-FP
FCVT.S.int S WI[UJ/L[U] src RM dest OP-FP

Figure 38: Single-Precision FP to Integer and Integer to FP Conversion Instructions

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 69

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction Operation Description
FCVT.W.S rd, rs1 x[rd] = Converts a single-precision float-
sext(s32f32(f[rsi])) ing-point number to a signed 32-bit
integer.
FCVT.S.W rd, rs1 flrd] = Converts a signed 32-bit integer to
f32532(x[rs1]) a single-precision floating-point
number.
FCVT.WU.S rd, rs1 x[rd] = Converts a single-precision float-
sext (u32f32(f[rsi1])) ing-point number to an unsigned
32-bit integer.
FCVT.S.WU rd, rs1 flrd] = Converts an unsigned 32-bit inte-
f32y32(x[rsi]) ger to a single-precision floating-
point number.

Table 40: Single-Precision FP Conversion Instructions Description

If the rounded result is not representable in the destination format, it is clipped to the nearest
value and the invalid flag is set.

Single-Precision Floating-Point to Floating-Point Sign-Injection Instructions

The floating-point to floating-point sign-injection instructions produce a result that takes all bits
except the sign bit from rsi. The sign-injection instructions provide floating-point MV, ABS and
NEG.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 l fmt l rs2 l rsl l m l rd l opcode
FSGN] S src2 srcl JINJ/IX dest OP-FP

Figure 39: Single-Precision FP to FP Sign-Injection Instructions

Instruction Operation Description
FSGNJ.S rd, rs1,rs2 flrd] = {f[rs2][31], Produces a result that takes all bits
flrs1][30:01} except the sign bit from rsi. The

result’s sign bit is rs2's sign bit.
FSGNJN.S rd, rs1, rs2 f[rd] = {~f[rs2][31], | Produces a result that takes all bits

flrs1][30:0]} except the sign bit from rsi. The
result’s sign bit is the opposite of
rs2's sign bit.
FSGNJX.S rd, rsi,rs2 flrd] = {f[rs1][31] ~ | Produces a result that takes all bits
flrs2][31], except the sign bit from rs1. The
flrs1][30:0]} sign bit is the XOR of the sign bits

of rsi1and rs2.

Table 41: Single-Precision FP to FP Sign-Injection Instructions Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 70

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

ISA Base Instruction | Pseudoinstruction | Description

FSGNJ.Srx,ry,ry FMV.S rx, ry Moves ry to rx.

FSGNJIN.S rx, ry,ry | FNEG.S rx, ry Moves the negation of ry to rx.
FSGNJX.Srx,ry,ry | FABS.Srx,ry Moves the absolute value of ry to rx.

Table 42: RISC-V Base Instruction to Assembly Pseudoinstruction Example

Single-Precision Floating-Point Move Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

l funct5 ‘ fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
FMV.X.W S 0 src 0 0 O dest OP-FP
FMV.W.X S 0 src 0 0 O dest OP-FP

Figure 40: Single-Precision FP Move Instructions

Instruction Operation Description
FMV.X.W rd, rs1 x[rd] = Moves the single-precision value in
sext(f[rs1][31:0]) floating-point register rsi repre-

sented in IEEE 754-2008 encoding
to the lower 32 bits of integer regis-
ter rd.

FMV.W.X rd, rs1 flrd] = x[rs1][31:0] Moves the single-precision value
encoded in IEEE 754-2008 stan-
dard encoding from the lower 32
bits of integer register rs1 to the
floating-point register rd.

Table 43: Single-Precision FP Move Instructions Description

5.5.6 Single-Precision Floating-Point Compare Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
l funct5 fmt ‘ rs2 ‘ rsl ‘ m ‘ rd ‘ opcode
FCMP S src2 srcl EQ/LT/LE dest OP-FP

Figure 41: Single-Precision FP Compare Instructions

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 71

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction Operation Description
FEQ.Srd, rsi,rs2 x[rd] = f[rsi1] == Writes 1 to the integer register rd if
flrs2] rsiis equal to rs2, 0 otherwise.

Performs a quiet comparison; only
sets the invalid operation exception
flag if either input is a signaling

NaN.
FLT.S rd, rs1,rs2 x[rd] = f[rs1] < Writes 1 to the integer register rd if
flrs2] rsi less then rs2, 0 otherwise.

Performs signaling comparisons;
sets the invalid operation exception
flag if either input is NaN.
FLE.Srd,rs1,rs2 x[rd] = f[rsi1] < Writes 1 to the integer register rd if
flrs2] rsi less than or equal to rs2, 0
otherwise. Performs signaling com-
parisons; sets the invalid operation
exception flag if either input is NaN.

Table 44: Single-Precision FP Compare Instructions Description

Single-Precision Floating-Point Classify Instruction

31 27262524 2019 1514 1211 = = 7 6 00
l funct5 ‘ fmt ‘ rs2 ‘ rsl rm rd ‘ opcode
FCLASS S 0 src 0 0 1 dest OP-FP

Figure 42: Single-Precision FP Classify Instruction

Instruction Operation Description
FCLASS.S rd, rs1 x[rd] = Examines the value in floating-point
classifys(f[rsi]) register rs1 and writes to integer

register rd a 10-bit mask that indi-
cates the class of the floating-point
number.

Table 45: Single-Precision FP Classify Instruction Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 72

SiFive E76-MC Core Complex Manual
Programmer’s Model

-
o
(=2
=

Meaning

rsiis -oo

rsiis negative normal number
rsiis a negative subnormal number
rsiis -0

rsiis +0

rsiis a positive subnormal number
rsiis a positive normal number
rsiis +o

rsiis a signaling NaN

rsiis a quiet NaN

OO [(N[O|U|R|W[IN|F|O

Table 46: Floating-Point Number Classes

5.6 C Extension: Compressed Instructions

The C Extension reduces static and dynamic code size by adding short 16-bit instruction encod-

ings for common operations. The C extension can be added to any of the base ISAs (RV32,

21G1.01.00

RV64, RV128), and we use the generic term "RVC" to cover any of these. Typically, 50%—60%

of the RISC-V instructions in a program can be replaced with RVC instructions, resulting in a

25%-30% code-size reduction. The C extension is compatible with all other standard instruction
extensions. The C extension allows 16-bit instructions to be freely intermixed with 32-bit instruc-
tions, with the latter now able to start on any 16-bit boundary, i.e., IALIGN=16. With the addition

of the C extension, no instructions can raise instruction-address-misaligned exceptions. It is

important to note that the C extension is not designed to be a stand-alone ISA, and is meant to
be used alongside a base ISA. The compressed 16-bit instruction format is designed around the

assumption that x1 is the return address register and x2 is the stack pointer.

5.6.1 Compressed 16-bit Instruction Formats

15

12 11 7 6

|

fun:ct4 ‘ ' :rd/r51: ‘ ' rs2

0:p

15

Figure 43: CR Format - Register

13 12 11 . 1 6

:funct3: ‘ imm ‘) ‘rd/rslz) ‘ ' ' imm

0:p

15

Figure 44: CI Format - Immediate

13 12 7 6

) funct3) ‘ imm ‘ rs2

op

15

Figure 45: CSS Format - Stack-relative Store

13 12 5 4

) funct3) ‘ imm ‘ rd’

op

Figure 46: CIW Format - Wide Immediate

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

73

SiFive E76-MC Core Complex Manual
Programmer’s Model

21G1.01.00

15 . . 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 .
funct3 _imm ‘) rsl’) ‘ imm ‘) rd’ op
Figure 47: CL Format - Load
15 . . 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 .
funct3 _imm ‘) rsl’) ‘ imm ‘) rs2’ op
Figure 48: CS Format - Store
15 10 9 7 6 5 4 2
fuqctG)) ‘ ‘rd ! rsl" ‘ fun‘th ‘) rs2’ op
Figure 49: CA Format - Arithmetic
15 13 12 10 9 7 6 2
funct3 _ offset ‘ _rsl” ‘ _offset”

op

Figure 50: CJ Format - Jump

5.6.2 Stack-Pointed-Based Loads and Stores

The compressed load instructions are expressed in Cl format.

15 13 12 11 7 6 2
l ‘funct3‘ ‘ imm ‘)) rd)) ‘)) imm) op
C.LWSP offset[5] dest =0 offset[4:2|7:6] C2
C.LDSP offset[5] dest!=0 offset[4:3l8:6] C2
C.LQSP offset[5] dest!=0 offset[4]9:6] C2
C.FLWSP offset[5] dest offset[4:2]7:6] C2
C.FLDSP offset[5] dest offset[4:3]8:6] Cc2
Figure 51: Stack-Pointed-Based Loads
Instruction Description
C.LWSP Loads a 32-bit value from memory into register rd.
C.LDSP RV64C Instruction which loads a 64-bit value from memory into
register rd.
C.LQSP RV128C loads a 128-bit value from memory into register rd.
C.FLWSP RV32FC Instruction that loads a single-precision floating-point
value from memory into floating-point register rd.
C.FLDSP RV32DC/RV64DC Instruction that loads a double-precision
floating-point value from memory into floating-point register rd.

Table 47: Stack-Pointed-Based Load Instruction Description

The compressed store instructions are expressed in CSS format.

15 13 12 7 6 2
l funct3 l imm l rs2 op
C.SWSP offset[5:2|7:6] src C2
C.SDSP offset[5:3(8:6] src C2
C.SQSP offset[5:4]9:6] src C2
C.FSWSP offset[5:2(7:6] src Cc2
C.FSDSP offset[5:38:6] src Cc2

Figure 52: Stack-Pointed-Based Stores

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

74

SiFive E76-MC Core Complex Manual

Programmer’s Model

Instruction Description

C.LWSP Loads a 32-bit value from memory into register rd.

C.SWSP Stores a 32-bit value in register rs2 to memory.

C.SDSP RV64C/RV128C instruction that stores a 64-bit value in register
rs2 to memory.

C.SQSP RV128C instruction that stores a 128-bit value in register rs2 to
memory.

C.FSWSP RV32FC instruction that stores a single-precision floating-point
value in floating-point register rs2 to memory.

C.FSDSP RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register rs2 to memory.

Table 48: Stack-Pointed-Based Store Instruction Description

5.6.3 Register-Based Loads and Stores

The compressed register-based load instructions are expressed in CL format.

21G1.01.00

15 13 12 10 9 7 6 5 4 2 1 0
l funct3 ‘ imm ‘ rsl’ ‘ imm ‘ rd’ ‘ op
C.Lw offset[5:3] base offset[2|6] dest Co
C.LD offset[5:3] base offset[7:6] dest Co
C.LQ offset[S%AgB] base offset[7:6] dest Co
C.FLW offset[5:3] base offset[2|6] dest Co
C.FLD offset[5:3] base offset[7:6] dest Cco
Figure 53: Register-Based Loads
Instruction Description
C.LW Loads a 32-bit value from memory into register rd.
C.LD RV64C/RV128C-only instruction that loads a 64-bit value from
memory into register rd.
C.LQ RV128C-only instruction that loads a 128-bit value from memory
into register rd.
C.FLW RV32FC-only instruction that loads a single-precision floating-
point value from memory into floating-point register rd.
C.FLD RV32DC/RV64DC-only instruction that loads a double-precision
floating-point value from memory into floating-point register rd.

Table 49: Register-Based Load Instruction Description

The compressed register-based store instructions are expressed in CS format.

15 13 12 . . 10 9 . . 7 6 . 5 4 . . 2 1 . 0

l funct3 ‘ imm rsl’ ‘ imm ‘ rs2’ ‘ op
C.SwW offset[5:3] base offset[2|6] src Co
C.SD offset[5:3] base offset[7:6] src Co
C.SQ offset[5|4|8] base offset[7:6] src Cco
C.FSwW offset[5:3] base offset[2|6] src Co
C.FSD offset[5:3] base offset[7:6] src Cco

Figure 54: Register-Based Stores

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

75

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction Description

C.sw Stores a 32-bit value in register rs2 to memory.

C.sDh RV64C/RV128C instruction that stores a 64-bit value in register
rs2 to memory.

C.SQ RV128C instruction that stores a 128-bit value in register rs2 to
memory.

C.FSW RV32FC instruction that stores a single-precision floating-point
value in floating point register rs2 to memory.

C.FSD RV32DC/RV64DC instruction that stores a double-precision
floating-point value in floating-point register rs2 to memory.

Table 50: Register-Based Store Instruction Description

5.6.4 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions.

The unconditional jump instructions are expressed in CJ format.

15 . . 13 12 2 1 . 0

f t3
TN o
C.JAL offset[11|4|9:8|10|6|7|3:1 5] Cl

Figure 55: Unconditional Jump Instructions

imm

Instruction Description
C.J Unconditional control transfer.
C.JAL RV32C instruction that performs the same operation as C.J, but

additionally writes the address of the instruction following the
jump (pc+2) to the link register, x1.

Table 51: Unconditional Jump Instruction Description

The unconditional control transfer instructions are expressed in CR format.

15 . 12 11 . . 1 6 . . 2 1 0
l funct4 ‘ rsl ‘ rs2 ‘ op
C.JR src!=0 0 Cc2
C.IALR src!=0 0 Cc2

Figure 56: Unconditional Control Transfer Instructions

Instruction Description

C.JR Performs an unconditional control transfer to the address in reg-
ister rsi.

C.JALR Performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link
register, x1.

Table 52: Unconditional Control Transfer Instruction Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 76

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

The conditional control transfer instructions are expressed in CB format.

15 13 12 10 9 7 6 . . 2 10
l funct3 ‘ _imm ‘ _rsl” ‘) _imm) ‘ op
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] Cl
C.BNEZ offset[8[4:3] src offset[7:6]2:1|5] Cl

Figure 57: Conditional Control Transfer Instructions

Instruction Description

C.BEQZ Conditional control transfers. Takes the branch if the value in
register rs1' is zero.

C.BNEZ Conditional control transfers. Takes the branch if rs1' contains
a nonzero value.

Table 53: Conditional Control Transfer Instruction Description

5.6.5 Integer Computational Instructions

Integer Constant-Generation Instructions

15 13 12 11 7 6 2 1 0
l) funct3) ‘imm[S]‘)) rd)) ‘)) imm)) op
C.LI imm([5] dest !=0 imm[4:0] Cl
Cl.LUI nzimm([17] dest !'= {0,2} imm[16:12] Cl

Figure 58: Integer Constant-Generation Instructions

Instruction Description
C.Ll Loads the sign-extended 6-bit immediate, imm, into register rd.
C.LUI Loads the non-zero 6-bit immediate field into bits 17-12 of the

destination register, clears the bottom 12 bits, and sign-extends
bit 17 into all higher bits of the destination

Table 54: Integer Constant-Generation Instruction Description

Integer Register-immediate Operations

15 . . 13 12 11 7 6 2 1 . 0
l funct3 ‘imm[S]‘ rd/rs1 ‘ imm[4:0] op
C.ADDI nzimm([5] dest!=0 nzimm([4:0] Cl
C.ADDIW imm[5] dest !=0 imm[4:0] Cl
C.ADDI16SP nzimm([9] 2 nzimm([4|6]8:7|5] Cl

Figure 59: Integer Register-Immediate Operations

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 77

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Instruction Description

C.ADDI Adds the non-zero sign-extended 6-bit immediate to the value in
register rd then writes the result to rd.

C.ADDIW RV64C/RV128C instruction that performs the same computation
but produces a 32-bit result, then sign-extends result to 64 bits.

C.ADDI16SP Adds the non-zero sign-extended 6-bit immediate to the value in

the stack pointer (sp=x2), where the immediate is scaled to rep-
resent multiples of 16 in the range (-512,496). C.ADDI16SP is
used to adjust the stack pointer in procedure prologues and epi-
logues.

Table 55: Integer Register-Immediate Operation Description

15 13 12 5 4 2 1 0
funct3 ‘ imm ‘ rd’ ‘ op
C.ADDI4SPN nzuimm([5:4[9:6]2|3] dest Cco

Figure 60: Integer Register-Immediate Operations (con't)

Instruction Description
C.ADDI4SPN Adds a zero-extended non-zero immediate, scaled by 4, to the
stack pointer, x2, and writes the result to rd'.

Table 56: Integer Register-Immediate Operation Description (con't)

15 13 12 11 . . 7 6 . . 2 1 0
funct3 #hamt[sh rd/rs1 ‘ shamt[4:0] ‘ op
C.SLLI shamt[5] dest!=0 shamt[4:0] Cc2

Figure 61: Integer Register-lmmediate Operations (con't)

Instruction Description
C.SLLI Performs a logical left shift of the value in register rd then writes
the result to rd. The shift amount is encoded in the shamt field.

Table 57: Integer Register-Immediate Operation Description (con't)

15 . . 13 12 11 . 10 9 . . 7 6 2 1 . 0
) funct3) %hamt[Sh fuqctz ‘ ‘rd '/rsl" ‘) shamt[4:9]) ‘ op
C.SRLI shamt[5] C.SRLI dest shamt[4:0] Cl
C.SRAI shamt[5] C.SRAI dest shamt[4:0] Cl

Figure 62: Integer Register-Immediate Operations (con't)

Instruction Description

C.SRLI Logical right shift of the value in register rd' then writes the
result to rd'. The shift amount is encoded in the shamt field.

C.SRAI Arithmetic right shift of the value in register rd' then writes the
result to rd'. The shift amount is encoded in the shamt field.

Table 58: Integer Register-Immediate Operation Description (con't)

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 78

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

15 . . 13 12 11 . 10 9 . . 7 6 2 1 . 0
funct3 ‘imm[S]‘ funct2 ‘ rd’/rsl” ‘) imm[4:0]) ‘ op
C.ANDI imm[5] C.ANDI dest imm[4:0] Cl

Figure 63: Integer Register-lmmediate Operations (con't)

Instruction Description
C.ANDI Computes the bitwise AND of the value in register rd’ and the
sign-extended 6-bit immediate, then writes the result to rd'".

Table 59: Integer Register-Immediate Operation Description (con't)

Integer Register-Register Operations

15 T T T 12 11 T T T T 7 6 T T T T 2 1 T O
l) funct3) ‘) _rd/rs1) ‘) L rs2) op
C.MV dest!=0 src!=0 C2
C.ADD dest!=0 src!=0 Cc2

Figure 64: Integer Register-Register Operations

Instruction Description

C.MV Copies the value in register rs2 into register rd.

C.ADD Adds the values in registers rd and rs2 and writes the result to
register rd.

Table 60: Integer Register-Register Operation Description

15 10 9 7 6 5 4 2 1 0
fuqct6)) ‘ ‘rd'/rsl" ‘ fun‘th ‘) rs2’) ‘ op
C.AND dest C.AND src Cl
C.OR dest C.OR src Cl
C.XOR dest C.XOR src Cl
C.SUB dest C.SUB src Cl
C.ADDW dest C.ADDW src Cl
C.SuBwW C.SuBW

Figure 65: Integer Register-Register Operations (con't)

Instruction Description

C.AND Computes the bitwise AND of the values in registers rd' and
rs2'.

C.OR Computes the bitwise OR of the values in registers rd’' and rs2'.

C.XOR Computes the bitwise XOR of the values in registers rd' and r2'.

C.suB Subtracts the value in register rs2' from the value in register rd'.

C.ADDW RV64C/RV128C-only instruction that adds the values in regis-

ters rd' and rs2’, then sign-extends the lower 32 bits of the sum
before writing the result to register rd.

C.SuBwW RV64C/RV128C-only instruction that subtracts the value in reg-
ister rs2' from the value in register rd’, then sign-extends the
lower 32 bits of the difference before writing the result to register
rd.

Table 61: Integer Register-Register Operation Description (con't)

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 79

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Defined lllegal Instruction
A 16-bit intruction with all bits zero is permanently reserved as an illegal instruction.

15 13 12 11 ' ' 7 6 ' ' 2 10
L o ol o e T e] 0
0 0 0 0 0

Figure 66: Defined lllegal Instruction

5.7 B Extension: Bit Manipulation Instructions

This section discusses the bit manipulation instructions supported by RISC-V.

5.7.1 Basic Bit Manipulation Instructions

Count Leading/Trailing Zeroes Instructions

Instruction Description

CLZrd,rs Counts the number of O bits before the first 1 bit counting from
the most significant bit. If the input is O, the output is XLEN. If
the input is -1, the output is 0.

CTZrd,rs Counts the number of 0 bits at the least significant bit end of the
argument. If the input is O, the output is XLEN. If the input is -1,
the output is 0.

Table 62: Count Leading/Trailing Zeroes Instructions Description

Count Bits Set Instructions

Instruction Description
CPOP rd, rs Counts the number of 1 bits in a register.

Table 63: Count Bits Set Instructions Description

Logic-With-Negate Instructions

Instruction Description

ANDN rd, rsi,rs2 Bitwise logical AND with rs2 inverted.
ORN rd, rsi, rs2 Bitwise logical OR with rs2 inverted.
XNOR rd, rsi1,rs2 Bitwise logical XOR with rs2 inverted.

Table 64: Logic-With-Negate Instructions Description

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 80

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Comparison Instructions

Instruction Description

MIN rd, rsi, rs2 Minimum integer.

MINU rd, rs1,rs2 Unsigned minimum integer.
MAX rd, rsi,rs2 Maximum integer.

MAXU rd, rs1, rs2 Unsigned maximum integer.

Table 65: Comparison Instructions Description

Sign-Extend Instructions

Instruction Description
SEXT.B rd, rs Sign-extends a byte.
SEXTHrd, rs Sign-extends a half-word.

Table 66: Sign-Extend Instructions

5.7.2 Bit Permutation Instructions

A bit permutation essentially applies an invertible function to the bit addresses. Bit addresses
are 5 bit values on RV32.

Instruction Description

ROR rd, rs1,rs2 Rotate right shift the values from the opposite side of the regis-
ter, in order.

ROL rd, rs1,rs2 Rotate left shift the values from the opposite side of the register,
in order.

RORI rd, rs1, imm Rotate right shift, and the shift amount is encoded in the lower 5
bits of the I-immediate field.

Table 67: Bit Permutation Instructions Description

5.7.3 Address Calculation Instructions

Instruction Description

SH1ADD rd, rsi1,rs2 Shifts rs1 by 1 bit, then adds the result to rs2.
SH2ADD rd, rsi1,rs2 Shifts rs1 by 2 bits, then adds the result to rs2.
SH3ADD rd, rsi,rs2 Shifts rs1 by 3 bits, then adds the result to rs2.

Table 68: Address Calculation Instructions Description

5.7.4 Bit Manupulation Pseudoinstructions

The B Extension also implements a set of pseudoinstructions.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 81

SiFive E76-MC Core Complex Manual 21G1.01.00

Programmer’s Model

Instruction Description

ZEXTH rd, rs Zero-extends a half-word.

REV8 Reverses the order of bytes in a word, thus performing endian-
ness conversion.

ORC.B Byte-wise reverse and or-combine.

Table 69:

Bit Manipulation Pseudoinstructions Description

5.8 Zicsr Extension: Control and Status Register

Instructions

RISC-V defines a separate address space of 4096 Control and Status registers associated with
each hart. The defined instructions access counter, timers and floating point status registers.

0000 2019 = 1514 12 11 = = 7 6 0

l csr rsl ‘ funct3 ‘ rd ‘ opcode ‘
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm([4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm([4:0] CSRRCI dest SYSTEM

Figure 67: Zicsr Instructions

Instruction

Description

CSRRW rd, rsi1 csr

Instruction atomically swaps values in the CSRs and integer reg-
isters.

CSRRS rd, rsi1csr

Instruction reads the value of the CSR, zeroextends the value to
32-bits, and writes it to integer register rd. The initial value in
integer register rsi is treated as a bit mask that specifies bit
positions to be set in the CSR.

CSRRC rd, rs1 csr

Instruction reads the value of the CSR, zeroextends the value to
32-bits, and writes it to integer register rd. The initial value in
integer register rsi is treated as a bit mask that specifies bit
positions to be cleared in the CSR.

CSRRWI rd, rsi1 csr

Update the CSR using an 32-bit value obtained by zero-extend-
ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the
rsl field instead of a value from an integer register.

CSRRSI rd, rs1 csr

Update the CSR using an 32-bit value obtained by zero-extend-
ing a 5-bit unsigned immediate (uimm[4:0]) field encoded in the
rsl field instead of a value from an integer register.

CSRRCI rd, rsi1csr

If the uimm([4:0] field is zero, then these instructions will not write
to the CSR.

Table 70: Control and Status Register Instruction Description

The CSRRW!I, CSRRSI, and CSRRCI instructions are similar in kind to CSRRW, CSRRS, and
CSRRC respectively, except in that they update the CSR using an 32-bit value obtained by
zero-extending a 5-bit unsigned immediate (uimm[4:0]) field encoded in the rsl field instead of a
value from an integer register. For CSRRSI and CSRRCI, these instructions will not write to the

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 82

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

CSR if the uimm[4:0] field is zero, and they shall not cause any of the size effecs that might oth-
erwise occur on a CSR write. For CSRRWI, if rd = x0, then the instruction shall not read the
CSR and shall not cause any of the side effects that might occur on a CSR read. Both CSRRSI
and CSRRCI will always read the CSR and cause any read side effects regardless of the rd and
rsi fields.

Table 71 shows if a CSR reads or writes given a particular CSR.

Register Operand
Instruction | rd rsl read CSR? | write CSR?

CSRRW x0 - no yes
CSRRW X0 - yes yes
CSRRS/C - X0 yes no

CSRRS/C - Ix0 | yes yes

Immediate Operand
Instruction | rd | uimm | read CSR? | write CSR?

CSRRWI X0 - no yes
CSRRWI Ix0 - yes yes
CSRRS/CI - |0 yes no

CSRRS/CI - 10 yes yes

Table 71: CSR Reads and Writes

5.8.1 Control and Status Registers

The control and status registers (CSRs) are only accessible using variations of the CSRR
(Read) and CSRRW (Write) instructions. Only the CPU executing the csr instruction can read or
write these registers, and they are not visible by software outside of the core they reside on. The
standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs.
Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access
a CSR without appropriate privilege level or to write a read-only register also raise illegal
instruction. A read/write register might also contain some bits that are read-only, in which case,
writes to the read-only bits are ignored. Each core functionality has its own control and status
registers which are described in the corresponding section.

5.8.2 Defined CSRs

The following tables describe the currently defined CSRs, categorized by privilege level. The
usage of the CSRs below is implementation specific. CSRs are only accessible when operating
within a specific access mode (user mode, debug mode, supervisor mode, or machine mode).
Therefore, attempts to access a non-existent CSR raise an illegal instruction exception, and
attempts to access a CSR without appropriate privilege level or to write a read-only register also
raise illegal instruction exceptions.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 83

SiFive E76-MC Core Complex Manual

Programmer’s Model

21G1.01.00

Number | Privilege | Name | Description
User Trap Setup
0x000 RW ustatus User status register.
0x004 RW uie User interrupt-enable register.
0Xx005 RwW utvec User trap handler base address.
User Trap Handling
0x040 RW uscratch Scratch register for use trap handlers.
0x041 RW uepc User exception program counter.
0x042 RW ucause User trap cause.
0x043 RW ubadaddr User bad address.
0x044 RW uip User interrupt pending.
User Floating-Point CSRs
0x001 RW fflags Floating-Point Accrued Exceptions.
0x002 RW frm Floating-Point Dynamic Rounding Mode.
0x003 RW fcsr Floating-Point Control and Status Register (frm +
fflags).
User Counter/Timers
0xCO0 RO cycle Cycle counter for RDCYCLE instruction.
oxCo1 RO time Timer for RDTIME instruction.
0xCO2 RO instret Instructions-retired counter for RDINSTRET
instruction.
0xCO3 RO hpmcounter3 Performance-monitoring counter.
0xCo4 RO hpmcounter4 Performance-monitoring counter.
OXC1F RO hpmcounter3i | Performance-monitoring counter.
OxC80 RO cycleh Upper 32 bits of cycle, RV32l only.
0xC81 RO timeh Upper 32 bits of time, RV32l only.
0xC82 RO instreth Upper 32 bits of instret, RV32I only.
0xC83 RO hpmcounter3h | Upper 32bits of hpmcounter3, RV32l only.
0xC84 RO hpmcounter4h | Upper 32bits of hpmcounter4, RV32l only.
OXCOF RO hpmcounter31h | Upper 32bits of hpmcounter3i, RV32l only.

Table 72: User Mode CSRs

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

84

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Number | Privilege | Name | Description
Machine Information Registers
OxF11 RO mvendorid Vendor ID.
OxF12 RO marchid Architecture ID.
OxF13 RO mimpid Implementation ID.
OxF14 RO mhartid Hardware thread ID.
Machine Trap Setup

0x300 RwW mstatus Machine status register.
0x301 RwW misa ISA and extensions.
0x302 RW medeleg Machine exception delegation register.
0x303 RW mideleg Machine interrupt delegation register.
0x304 RW mie Machine interrupt-enable register.
0x305 RW mtvec Machine trap-handler base address.
0x306 RW mcounteren Machine counter enable.

Machine Trap Handling
0x340 RwW mscratch Scratch register for machine trap handlers.
0x341 RW mepc Machine exception program counter.
0x342 RW mcause Machine trap cause.
0x343 RwW mtval Machine bad address or instruction.
0x344 RW mip Machine interrupt pending.

Machine Memory Protection
0x3A0 RW pmpcfgo Physical memory protection configuration.
0x3A1 RW pmpcfgl Physical memory protection configuration, RV32
only.
OX3A2 RW pmpcfg2 Physical memory protection configuration.
0x3A3 RW pmpcfg3 Physical memory protection configuration, RV32
only.

0x3B0 RW pmpaddroe Physical memory protection address register.
0x3B1 RW pmpaddri Physical memory protection address register.
Ox3BF RwW pmpaddri5s Physical memory protection address register.

Machine Counter/Timers
0xB0OO RW mcycle Machine cycle counter.
0xB0O2 RwW minstret Machine instruction-retired counter.
0xB80 RW mcycleh Upper 32 bits of mcycle, RV32I only.
0xB82 RW minstreth Upper 32 bits of minstret, RV32l only.
0xB83 RW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32l only.
0xB84 RW mhpmcounter4h | Upper 32 bits of mhpmcounter4, RV32I only.
OXxB9F RW mhpmcounter31h | Upper 32 bits of mhpmcounter3i, RV32l only.

Machine Counter Setup
0x320 RW mcountinhibit | Machine counter-inhibit register.

Table 73: Machine Mode CSRs

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 85

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Number | Privilege | Name Description

0x323 RW mhpmevent3 Machine performance-monitoring event selector.

0x324 RW mhpmevent4 Machine performance-monitoring event selector.

Ox33F RwW mhpmevent31 Machine performance-monitoring event selector.
Debugl/Trace Register (shared with Debug Mode)

OX7A0 RW tselect Debug/Trace trigger register select.

0x7A1 RW tdatal First Debug/Trace trigger data register.

OX7A2 RW tdata2 Second Debug/Trace trigger data register.

OX7A3 RW tdata3 Third Debug/Trace trigger data register.

Table 73: Machine Mode CSRs

Number | Privilege | Name Description

0x7B0O RW dcsr Debug control and status register.
0x7B1 RwW dpc Debug PC.

0Xx7B2 RW dscratch | Debug scratch register.

Table 74: Debug Mode Registers

5.8.3 CSR Access Ordering

On a given hart, explicit and implicit CSR access are performed in program order with respect to
those instructions whose execution behavior is affected by the state of the accessed CSR. In
particular, a CSR access is performed after the execution of any prior instructions in program
order whose behavior modifies or is modified by the CSR state and before the execution of any
subsequent instructions in program order whose behavior modifies or is modified by the CSR
state.

Furthermore, a CSR read access instruction returns the accessed CSR state before the execu-
tion of the instruction, while a CSR write access instruction updates the accessed CSR state
after the execution of the instruction. Where the above program order does not hold, CSR
accesses are weakly ordered, and the local hart or other harts may observe the CSR accesses
in an order different from program order. In addition, CSR accesses are not ordered with respect
to explicit memory accesses, unless a CSR access modifies the execution behavior of the
instruction that performs the explicit memory access or unless a CSR access and an explicit
memory access are ordered by either the syntactic dependencies defined by the memory model
or the ordering requirements defined by the Memory-Ordering PMAs. To enforce ordering in all
other cases, software should execute a FENCE instruction between the relevant accesses. For
the purposes of the FENCE instruction, CSR read accesses are classified as device input (I), and
CSR write accesses are classified as device output (O). For more about the FENCE instruc-
tions, see Section 5.12. For CSR accesses that cause side effects, the above ordering con-
straints apply to the order of the initiation of those side effects but does not necessarily apply to
the order of the completion of those side effects.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 86

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.8.4 SiFive RISC-V Implementation Version Registers

mvendorid

The value in mvendorid is ©x489, corresponding to SiFive’s JEDEC number.

marchid

The value in marchid indicates the overall microarchitecture of the core and at SiFive we use
this to distinguish between core generators. The RISC-V standard convention separates
marchid into open-source and proprietary namespaces using the most-significant bit (MSB) of
the marchid register; where if the MSB is clear, the marchid is for an open-source core, and if
the MSB is set, then marchid is a proprietary microarchitecture. The open-source namespace is
managed by the RISC-V Foundation and the proprietary namespace is managed by SiFive.

SiFive’s E3 and S5 cores are based on the open-source 3/5-Series microarchitecture, which
has a Foundation-allocated marchid of 1. Our other generators are numbered according to the
core series.

Value Core Generator
0x8000_0007 | 7-Series Processor (E7, S7, U7 series)

Table 75: Core Generator Encoding of marchid

mimpid
The value in mimpid holds an encoded value that uniquely identifies the version of the generator

used to build this implementation. If your release version is not included in Table 76, contact
your SiFive account manager for more information.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 87

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Value Generator Release Version
0x0000_0000 | Pre-19.02
0x2019_0228 | 19.02
0x2019_0531 | 19.05
0x2019_0919 | 19.08p0p0/ 19.08.00
0x2019_1105 | 19.08p1p0/19.08.01.00
0x2019_1204 | 19.08p2p0 / 19.08.02.00
0x2020_0423 | 19.08p3p0 / 19.08.03.00
0x0120_0626 | 19.08p4p0 / 19.08.04.00
0x0220_0515 | koala.00.00-preview and koala.01.00-preview
0x0220_0603 | koala.02.00-preview
0x0220_0630 | 20G1.03.00 / koala.03.00-general
0x0220_0710 | 20G1.04.00 / koala.04.00-general
0x0220_0826 | 20G1.05.00 / koala.05.00-general
0x0320_0908 | kiwi.00.00-preview
0x0220_1013 | 20G1.06.00 / koala.06.00-general
0x0220_1120 | 20G1.07.00 / koala.07.00-general
0x0421_0205 | llama.00.00-preview
0x0421_0324 | 21G1.01.00/ llama.01.00-general

Table 76: Generator Release Encoding of mimpid

Reading Implementation Version Registers

To read the mvendorid, marchid, and mimpid registers, simply replace mimpid with mvendorid
or marchid as needed.

In C:

uintptr_t mimpid;
__asm__ volatile("csrr %0, mimpid" : "=r"(mimpid));

In Assembly:

csrr a5, mimpid

5.8.5 Custom CSRs

SiFive implements some custom CSRs that are specific to the implementation. For these CSRs,
including the Feature Disable CSR, consider Chapter 6.

5.9 Base Counters and Timers

RISC-V ISAs provide a set of up to 32x64-bit performance counters and timers that are accessi-
ble via unprivileged 32-bit read-only CSR registers 0xC00-0xC1F, with the upper 32 bits
accessed via CSR registers 0xC80-0xC9F on RV32. The first three of these (CYCLE, TIME, and

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 88

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

INSTRET) have dedicated functions; while the remaining counters, if implemented, provide pro-
grammable event counting.

The E76-MC Core Complex implements mcycle, mtime, and minstret counters, which have
dedicated functions: cycle count, real-time clock, and instructions-retired, respectively. The timer
functionality is based on the mtime register. Additionally, the E76-MC Core Complex implements
event counters in the form of mhpmcounter, which is used to monitor user requested events.

31 20 19 15 14 12 11 7 6 0
l csr rsl l funct3 l rd l opcode ‘
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM
RDINSTRET[H] 0 CSRRS dest SYSTEM

Figure 68: Timer and Counter Pseudoinstructions

Instruction Description

RDCYCLE rd Reads the low 32-bits of the cycle CSR which holds a count of
the number of clock cycles executed by the processor core on
which the hart is running from an arbitrary start time in the past.

RDCYCLEH rd RV32l instruction that reads bits 63—32 of the same cycle
counter.
RDTIME rd Generates an illegal instruction exception. The mtime register is

memory mapped to the CLINT register space and can be read
using a regular load instruction.

RDTIMEH rd RV32l-only instruction. Generates an illegal instruction excep-
tion. The mtime register is memory mapped to the CLINT regis-
ter space and can be read using a regular load instruction.
RDINSTRET rd Reads the low 32-bits of the instret CSR, which counts the num-
ber of instructions retired by this hart from some arbitrary start
point in the past.

RDINSTRETH rd RV32l-only instruction that reads bits 63-32 of the same instruc-
tion counter.

Table 77: Timer and Counter Pseudoinstruction Description

RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the cycle,
time, and instret counters. The RDCYCLE pseudoinstruction reads the low 32-bits of the
cycle CSR (mcycle), which holds a count of the number of clock cycles executed by the proces-
sor core on which the hart is running from an arbitrary start time in the past. The RDTIME
pseudoinstruction reads the low 32-bits of the time CSR (mtime), which counts wall-clock real
time that has passed from an arbitrary start time in the past. The RDINSTRET pseudoinstruction
reads the low 32-bits of the instret CSR (minstret), which counts the number of instructions
retired by this hart from some arbitrary start point in the past The rate at which the cycle counter
advances is rtc_clock. To determine the current rate (cycles per second) of instruction execu-
tion, call the metal_timer_get_timebase_frequency API. The
metal_timer_get_timebase_frequency and additional APIs are described in Section 5.9.2
below.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 89

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Number | Privilege | Name Description

0xCOO RO cycle Cycle counter for RDCYCLE instruction

0xCO1 RO time Timer for RDTIME instruction

0xCO2 RO instret | Instruction-retired counter for RDINSTRET instruction
0xC80 RO cycleh Upper 32 bits of cycle, RV32 only.

0xC81 RO timeh Upper 32 bits of time, RV32 only.

0xC82 RO instreth | Upper 32 bits of instret, RV32 only

Table 78: Timer and Counter CSRs

5.9.1 Timer Register

mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc_toggle signal described in the E76-MC Core Complex User Guide. On reset, mtime is
cleared to zero.

5.9.2 Timer API

The APIs below are used for reading and manipulating the machine timer. Other APIs are
described in more detail within the Freedom Metal documentation. https://sifive.github.io/free-
dom-metal-docs/

Functions
int metal_timer_get_cyclecount(int hartid, unsigned long long *cyclecount)
Read the machine cycle count.

Return
0 upon success

Parameters
* hartid: The hart ID to read the cycle count of

e cyclecount: The variable to hold the value

int metal_timer_get_timebase_frequency(int hartid, unsigned long long *timebase)
Get the machine timebase frequency.

Return
0 upon success

Parameters
* hartid: The hart ID to read the cycle count of

* timebase: The variable to hold the value

int metal_timer_set_tick(int hartid, int second)
Set the machine timer tick interval in seconds.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. a0

https://sifive.github.io/freedom-metal-docs/
https://sifive.github.io/freedom-metal-docs/

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Return
0 upon success

Parameters
* hartid: The hart ID to read the cycle count of

* second: The number of seconds to set the tick interval to

5.10 Privileged Instructions

The RISC-V architecture implements privileged instructions that can only be executed when the
E76-MC Core Complex is operating in a privileged mode. The SYSTEM major opcode is used
to encode all of the privileged instructions.

5.10.1 Machine-Mode Privileged Instructions

Environment Call and Breakpoint

These ECALL and EBREAK instructions cause a precise requested trap to the supporting exe-
cution environment. The ECALL instruction is used to make a service request to the execution
environment. The EBREAK instruction is used to return control to a debugging environment.

31 20 19 15 14 12 11 7 6 0
func‘t12. L |) .rsll) | fL.mct‘3 |) .rd.) | L opcoqe)
ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

Figure 69: ECALL and EBREAK Instructions

Trap-Return Instructions

To return after handling a trap, there are separate trap return instructions per privilege level:
MRET, SRET, and URET. MRET is always provided, while SRET must be provided if the
respective privilege mode is supported. URET is only provided if user-mode traps are sup-
ported. An XRET instruction can be executed in privilege mode x or higher, where executing a
lower-privilege XRET instruction will pop the relevant lower-privilege interrupt enable and privi-
lege mode stack.

Wait for Interrupt

The Wait for Interrupt (WFI) instruction provides a hint to the E76-MC Core Complex that the
current hart can be stalled until an interrupt might need servicing. Execution of the WFI instruc-
tion can also be used to inform the hardware platform that suitable interrupts should preferen-
tially be routed to this hart.

31' - '20 19' . '15 14' '12 11' . 7 6 - '0
| functi2 | . rsi |fgnc§3| .d | ., opcode |
WFI 0 PRIV 0 SYSTEM
Figure 70: Wait for Interrupt Instruction

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 91

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt
exception will be taken on the following instruction, i.e., execution resumes in the trap handler
and mepc = pc + 4. The WFI instruction can also be executed when interrupts are disabled. The
operation of WFI must be unaffected by the global interrupt bits in mstatus (MIE/SIE/UIE) (i.e.,
the hart must resume if a locally enabled interrupt becomes pending), but should honor the indi-
vidual interrupt enables (e.g, MTIE). WFI is also required to resume execution for locally
enabled interrupts pending at any privilege level, regardless of the global interrupt enable at
each privilege level. If the event that causes the hart to resume execution does not cause an
interrupt to be taken, execution will resume at pc + 4, and software must determine what action
to take, including looping back to repeat the WFI if there was no actionable event.

The suggested way to call WFI is inside an infinite loop as described below.
while (1) {

__asm__ volatile ("wfi");
}

The WFI instruction is just a hint, and a legal implementation is to implement WFI as a NOP. In
SiFive’s implementation of WFI, the WFI instruction is issued and the core goes into internal
clock gating state.

5.11 ABI - Register File Usage and Calling Conventions
RV32IMAFCB has 32 x registers that are each 32 bits wide.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 92

SiFive E76-MC Core Complex Manual
Programmer’s Model

Register | ABI Name | Description Saver
X0 zero Hard-wired zero -

x1 ra Return address Caller
X2 sp Stack pointer Callee
X3 gp Global pointer -

X4 tp Thread pointer -

x5 to Temporary / alternate link register Caller
X6-7 t1-2 Temporaries Caller
X8 s0/fp Saved-register / frame-ponter Callee
X9 sl Saved register Callee
x10-11 an-1 Function arguments / return values | Caller
x12-17 a2-7 Function arguments Caller
X18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Floating-Point Registers

fo-7 fto-7 FP temporaries Caller
f8-9 fs0-1 FP saved registers Callee
f1e0-11 fao0-1 FP arguments / return values Caller
f12-17 fa2-7 FP arguments Caller
f18-27 fa2-11 FP saved registers Callee
f28-31 ftg-11 FP temporaries Caller

Table 79: RISC-V Registers

The programmer counter PC hold the address of the current instruction.

e x1 / ra - holds the return address for a call.

e x2 / sp - stack pointer, points to the current routine stack.

x8 / fp / sO -frame pointer, points to the bottom of the top stack frame.

* x3 / gp - global pointer, points into the middle of the global data section.
The common definition is: .data + 0x800. RISC-V immediate values are 12-bit signed val-
ues, which is +/- 2048 in decimal or +/- ©x800 in hex. So that global pointer relative
accesses can reach their full extent, the global pointer point + 8x800 into the data section.
The linker can then relax LUI+LW, LUI+SW into gp-relative LW or SW. i.e. shorter instruc-

tion sequences and access most global data using LW at gp +/- offset

LW t0 , 0x800(gp)
LW t1 , Ox7FF(gp)

21G1.01.00

* x4 / tp - thread pointer, point to thread-local storage (TLS-mostly used in linux and

RTOS).

If you create a variable in TLS, every thread has its own copy of the variable, i.e. changes
to the variable are local to the thread. This is a static area of memory that gets copied for
each thread in a program. It is also used to create libraries that have thread-safe functions,

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

93

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

because of the fact that each call to a function has its copy of the same global data, so it's
safe.

5.11.1 RISC-V Assembly

RISC-V instructions have opcodes and operands.

E.g. add x1, x2, x3 #x1=x2 +x3

AR

Operation Destination First operand Second operand Assembly comment
code (opcode) register register register character

Figure 71: RISC-V Assembly Example

Assembly C Description

add x1,x2,x3 a=b+c a=x1, b=x2, c=x3

sub x3, x4, x5 d=e - f d=x3, e=x4, f=x5

add x0,x0, x0 NOP Writes to x0 are always ignored

add x3,x4,x0 f=9q f=x3, g=x4

addi x3,x4,-10 f=g9 - 10 f=x3, g=x4

1w x10,12(x13) # 12 = 3x4 | int A[100]; Reg x10 gets A[3]

add x11,x12,x10 g =h + A[3]; g=x11, h=x12

1w x10,12(x13) # 12 = 3x4 | int A[100]; Reg x10 gets A[3]

add x10,x12,x10 A[10] = h + A[3]; | h=x12

sw x10,40(x13) # 40 = 10x4 Reg x10 gets h + A[3]
bne x13,x14, done if (i == j) f=x10, g=x11, h=x12, i=x13, j=x14
add x10,x11,x12 f =9+ h;

done:
bne x10,x14,else if (i == j) f=x10, g=x11, h=x12, i=x13, j=x14
add x10,x11,x12 f =9+ h;
j done else

else: sub x10,x11,x12 f=9 - h;

done:

Table 80: RISC-V Assembly and C Examples

5.11.2 Assembler to Machine Code

The following flowchart describes how the assembler converts the RISC-V assembly code to
machine code.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 94

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Assembler source files

foo.S bar.S (text)

Y Y

Assembler converts
Assembler Assembler human readable
assembly code to
instruction bit patterns

Y \/

Machine code object

foo.o bar.o .
files

Pre-built object file

Linker lib.o . i
libraries

Machine code

a.out .
executable file

Figure 72: RISC-V Assembly to Machine Code

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 95

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

One RISC-V Instruction = 32 hits

Figure 73: One RISC-V Instruction

5.11.3 Calling a Function (Calling Convention)

Put parameters in place where function can access them.
Transfer control to function.

Acquire local resources needed for tunction.

Perform function task.

o kr 0 Db PR

Place result values where calling code can access and restore any registers might have
used.

6. Return control to original caller.

Caller-saved The function invoked can do whatever it likes with the registers. Callee-saved If a
function wants to use registers it needs to store and restore them.

Take, for example, the following function:

int leaf(int g, int h, int i, int j) {
int f;
f = (g+h) - (i+]);
return f;

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 96

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

In this function above, arguments are passed in a0, a1, a2 and a3. The return value is returned
in ao.

addi sp, sp, -8 # adjust stack for 2 items

sw sl, 4(sp) # save 1 for use afterwards

sw s0, 0(sp) # save sO for use afterwards

add s0,a0,al # s0 =g+ h

add sl1,a2,a3 # sl =1+

sub a0,s0,s1 # return value (g + h) - (i + j)
lw s0, 0(sp) # restore register sO for caller
lw s1, 4(sp) # restore register sl for caller
addi sl1, 4(sp) # adjust stack to delete 2 items
jr ra # jump back to calling routine

In the assembly above, notice that the stack pointer was decremented by 8 to make room to
save the registers. Also, s1 and s0 are saved and will be stored at the end.

Nested Functions

In the case of nested function calls, values held in a®-7 and ra will be clobbered.

Take, for example, the following function:

int sumSquare(int x, int y) {
return mult(x,x) + y;

}

In the function above, a function called sumSquare is calling mult. To execute the function,
there’s a value in ra that sumSquare wants to jump back to, but this value will be overwritten by
the call to mult.

To avoid this, the sumSquare return address must be saved before the call to mult. To save the

the return address of sumSquare, the function can utilize stack memory. The user can use stack
memory to preserve automatic (local) variables that don't fit within the registers.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 97

SiFive E76-MC Core Complex Manual

Programmer’s Model

sp

\/

21G1.01.00

\/

sp
Saved return
address (if needed)

Saved argument
registers (if any)

Saved saved
registers (if any)

Local variables (if
any)
sp

Before call During call

Figure 74: Stack Memory during Function Calls

Consider the assembly for sumSquare below:

sumSquare:

addi sp,sp, -8

sw ra, 4(sp)
sw al, 0(sp)
mv al,a0
jal mult
lw al, 0(sp)
add a0,a0,al
lw ra, 4(sp)
addi sp,sp,8
mult:...

reserve space on stack
save return address
save y

mult(x,x)

call mult

restore y

mult()+y

get return address
restore stack

HoH R R H R KR

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

After call

98

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Memory Layout

sp = Oxbfff_fffO

Stack

|
\

f

Dynamic data

Static Data
0x1000_0000

Text

pc = 0x0001_0000

Figure 75: RV32 Memory Layout

5.12 Memory Ordering - FENCE Instructions

In the RISC-V ISA, each thread, referred to as a hart, observes its own memory operations as if
they executed sequentially in program order. RISC-V also has a relaxed memory model, which
requires explicit FENCE instructions to guarantee the ordering of memory operations.

The FENCE instructions include FENCE and FENCE.I. The FENCE instruction simply ensures that
the memory access instructions before the FENCE instruction get committed before the FENCE
instruction is committed. It does not guarantee that those memory access instructions have
actually completed. For example, a load instruction before a FENCE instruction can commit with-
out waiting for its value to come back from the memory system. FENCE . I functions the same as
FENCE, as well as flushes the instruction cache.

For example, without FENCE instructions:

Hart 1 executes:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 99

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Load X
Store Y
Store Z

Because of relaxed memory model, Hart 2 could see stores/loads arranged in any order:

Store Z
Load X
Store Y

With FENCE instructions:

Hart 1 executes:

Load X
Store Y
FENCE

Store Z

Hart 2 sees:

Store Y
Load X
Store Z

With FENCE instructions, Hart 2 is forced to see the Load X and the Store Y prior to the Store Z,
but could arbitrarily see Store Y before Load X or Load X before Store Y. Functionally, FENCE
instructions order the completion of older memory accesses prior to newer accesses. However,
unnecessary FENCE instructions slow processes and can hide bugs, so it is essential to identify
where and when FENCE should be used.

5.13 Boot Flow

This process is managed as part of the Freedom Metal source code. The freedom-metal boot
code supports single core boot or multi-core boot, and contains all the necessary initialization
code to enable every core in the system.

ENTRY POINT: File: freedom-metal/src/entry.S, label: _enter.

Initialize global pointer gp register using the generated symbol __global_pointers.
Write mtvec register with early_trap_vector as default exception handler.

Clear feature disable CSR 0x7c1.

Read mhartid into register ad and call _start, which exists in crt0.s.

We now transition to File: freedom-metal/gloss/crt0.S, label: _start.

N o o~ w PR

Initialize stack pointer, sp, with _sp generated symbol. Harts with mhartid of one or larger
are offset by (_sp + __stack_size x mhartid). The __stack_size field is generated in the
linker file.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 100

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

9.
10.
11.
12.
13.

14,

15.
16.

17.

18.

Check if mhartid == __metal_boot_hart and run the init code if they are equal. All other
harts skip init and go to the Post-Init Flow, step #15.

Boot Hart Init Flow begins here.

Init data section to destination in defined RAM space.
Copy ITIM section, if ITIM code exists, to destination.
Zero out bss section.

Call atexit library function that registers the 1ibc and freedom-metal destructors to run
after main returns.

Call the __1ibc_init_array library function, which runs all functions marked with
__attribute__ ((constructor)).
a. For example, PLL, UART, L2 if they exist in the design. This method provides full early
initialization prior to entering the main application.
Post-Init Flow Begins Here.

Call the C routine __metal_synchronize_harts, where hart O will release all harts once
their individual msip bits are set. The msip bit is typically used to assert a software interrupt
on individual harts, however interrupts are not yet enabled, so msip in this case is used as
a gatekeeping mechanism.

Check misa register to see if floating-point hardware is part of the design, and set up
mstatus accordingly.

Single or multi-hart design redirection step.
a. If designis a single hart only, or a multi-hart design without a C-implemented function
secondary_main, ONLY the boot hart will continue to main().

b. For multi-hart designs, all other CPUs will enter sleep via WFI instruction via the weak
secondary_main label in crt0.s, while boot hart runs the application program.

c. In a multi-hart design which includes a C-defined secondary_main function, all harts
will enter secondary_main as the primary C function.

5.14 Linker File

The linker file generates important symbols that are used in the boot code. The linker file
options are found in the freedom-e-sdk/bsp path.

There are usually three different linker file options:

e metal.default.lds — Use flash and RAM sections

* metal.ramrodata.lds — Place read only data in RAM for better performance

e metal.scratchpad.lds — Places all code + data sections into available RAM location

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 101

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

Each linker option can be selected by specifying LINK_TARGET on the command line.

For example:

make PROGRAM=hello TARGET=design-rtl CONFIGURATION=release
LINK TARGET=scratchpadsoftware

The metal.default.1ds linker file is selected by default when LINK_TARGET is not specified. If
there is a scenario where a custom linker is required, one of the supplied linker files can be
copied and renamed and used for the build. For example, if a new linker file named
metal.newmap.lds was generated, this can be used at build time by specifying
LINK_TARGET=newmap on the command line.

5.14.1 Linker File Symbols

The linker file generates symbols that are used by the startup code, so that software can use
these symbols to assign the stack pointer, initialize or copy certain RAM sections, and provide
the boot hart information. These symbols are made visible to software using the PROVIDE key-
word.

For example:

__stack size = DEFINED(stack size) ? stack size : 0x400;
PROVIDE(stack size = stack size);

Generated Linker Symbols

A description list of the generated linker symbols is shown below.

__metal_boot_hart
This is an integer number to describe which hart runs the main init flow. The mhartid CSR
contains the integer value for each hart. For example, hart 0 has mhartid==0, hart 1 has
mhartid==1, and so on. An assembly example is shown below, where a0 already contains
the mhartid value.

/* If we're not hart 0, skip the initialization work */

la t0, metal boot hart

bne a0, t0, skip init

An example on how to use this symbol in C code is shown below.

extern int metal boot hart;
int boot hart = (int)& metal boot hart;

Additional linker file generated symbols, along with descriptions are shown below.

__metal_chicken_bit
Status bit to tell startup code to zero out the Feature Disable CSR. Details of this register
are internal use only.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 102

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

__global_pointer$
Static value used to write the gp register at startup.

_sp
Address of the end of stack for hart 0, used to initialize the beginning of the stack since the
stack grows lower in memory. On a multi-hart system, the start address of the stack for
each hart is calculated using (_sp + __stack_size x mhartid)

metal_segment_bhss_target_start
metal_ segment_bss_target_end
Used to zero out global data mapped to .bss section.

* Only __metal_boot_hart runs this code.

metal_segment_data_source_start
metal_segment_data_target_start
metal_segment_data_target_end

Used to copy data from image to its destination in RAM.

e Only __metal_boot_hart runs this code.

metal_segment_itim_source_start
metal segment_itim_ target_start
metal_segment_itim_target_end
Code or data can be placed in itim sections using the
__attribute_ ((section(".itim"))).

» When this attribute is applied to code or data, the
metal_segment_itim_source_start, metal_segment_itim_target_start, and
metal_segment_itim_target_end symbols get updated accordingly, and these sym-
bols allow the startup code to copy code and data into the ITIM area.

o Only __metal_boot_hart runs this code.

Note

At the time of this writing, the boot flow does not support C++ projects

5.15 RISC-V Compiler Flags

5.15.1 arch, abi, and mtune

RISC-V targets are described using three arguments:

1. -march=ISA: selects the architecture to target.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 103

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

2. -mabi=ABI: selects the ABI to target.

3. -mtune=CODENAME: selects the microarchitecture to target.

-march

This argument controls which instructions and registers are available for the compiler, as
defined by the RISC-V user-level ISA specification.

The RISC-V ISA with 32, 32-bit integer registers and the instructions for multiplication would be
denoted as RV32IM. Users can control the set of instructions that GCC uses when generating
assembly code by passing the lower-case ISA string to the -march GCC argument: for example
*-march=rv32im. On RISC-V systems that don't support particular operations, emulation rou-
tines may be used to provide the missing functionality.

Example:

double dmul(double a, double b) {
return a * b;

}

will compile directly to a FP multiplication instruction when compiled with the D extension:
$ riscv64-unknown-elf-gcc test.c -march=rv64imafdc -mabi=1p64d -o- -S -03
dm:k&l.d fa0, fa0, fal
ret
but will compile to an emulation routine without the D extension:

$ riscv64-unknown-elf-gcc test.c -march=rv64i -mabi=1p64 -o- -S -03

dmul:
add sp,sp,-16
sd ra,8(sp)
call ~ muldf3
1d ra,8(sp)
add sp,sp,16
jr ra

Similar emulation routines exist for the C intrinsics that are trivially implemented by the M and F
extensions.

-mabi

-mabi selects the ABI to target. This controls the calling convention (which arguments are
passed in which registers) and the layout of data in memory. The -mabi argument to GCC spec-
ifies both the integer and floating-point ABIs to which the generated code complies. Much like
how the -march argument specifies which hardware generated code can run on, the -mabi
argument specifies which software-generated code can link against. We use the standard nam-
ing scheme for integer ABIs (i1p32 or 1p64), with an argumental single letter appended to

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 104

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

select the floating-point registers used by the ABI (11p32 vs. i1p32f vs. i1p32d). In order for
objects to be linked together, they must follow the same ABI.

RISC-V defines two integer ABIs and three floating-point ABIs.

e ilp32:int, long, and pointers are all 32-bits long. long long is a 64-bit type, char is 8-bit,
and short is 16-bit.

» 1p64: long and pointers are 64-bits long, while int is a 32-bit type. The other types remain
the same as ilp32.

The floating-point ABIs are a RISC-V specific addition:

nn

» " (the empty string): No floating-point arguments are passed in registers.

» f:32-bit and smaller floating-point arguments are passed in registers. This ABI requires the
F extension, as without F there are no floating-point registers.

» d: 64-bit and smaller floating-point arguments are passed in registers. This ABI requires the
D extension.

arch/abi Combinations

e march=rv32imafdc -mabi=ilp32d: Hardware floating-point instructions can be generated
and floating-point arguments are passed in registers. This is like the -mfloat-abi=hard
argument to ARM’s GCC.

e march=rv32imac -mabi=ilp32: No floating-point instructions can be generated and no
floating-point arguments are passed in registers. This is like the -mfloat-abi=soft argu-
ment to ARM’s GCC.

* march=rv32imafdc -mabi=ilp32: Hardware floating-point instructions can be generated,
but no floating-point arguments will be passed in registers. This is like the
-mfloat-abi=softfp argument to ARM’'s GCC, and is usually used when interfacing with
soft-float binaries on a hard-float system.

e march=rv32imac -mabi=ilp32d: lllegal, as the ABI requires floating-point arguments are
passed in registers but the ISA defines no floating-point registers to pass them in.

Example:

double dmul(double a, double b) {
return b * a;

}

If neither the ABI or ISA contains the concept of floating-point hardware then the C compiler
cannot emit any floating-point-specific instructions. In this case, emulation routines are used to
perform the computation and the arguments are passed in integer registers:

$ riscv64-unknown-elf-gcc test.c -march=rv32imac -mabi=ilp32 -o0- -S -03
dmul:
mv ad,a2

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 105

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

mv a5,a3
add sp,sp,-16
mv a2,al

mv a3,al

mv a0,ad

mv al,a5

sw ra,12(sp)
call __muldf3
w ra,12(sp)
add sp,sp, 16
jr ra

The second case is the exact opposite of this one: everything is supported in hardware. In this
case we can emit a single fmul.d instruction to perform the computation.

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32d -o- -S -03
dmul:
fmul.d fa0,fal,fad
ret

The third combination is for users who may want to generate code that can be linked with code
designed for systems that don’t subsume a particular extension while still taking advantage of
the extra instructions present in a particular extension. This is a common problem when dealing
with legacy libraries that need to be integrated into newer systems. For this purpose the com-
piler arguments and multilib paths designed to cleanly integrate with this workflow. The gener-
ated code is essentially a mix between the two above outputs: the arguments are passed in the
registers specified by the i1p32 ABI (as opposed to the i1p32d ABI, which could pass these
arguments in registers) but then once inside the function the compiler is free to use the full
power of the RV32IMAFDC ISA to actually compute the result. While this is less efficient than
the code the compiler could generate if it was allowed to take full advantage of the D-extension
registers, it's a lot more efficient than computing the floating-point multiplication without the D-
extension instructions

$ riscv64-unknown-elf-gcc test.c -march=rv32imafdc -mabi=ilp32 -o- -S -03

dmul:
add sp,sp,-16
sw a0,8(sp)
sw al,12(sp)
fld fa5,8(sp)
sw a2,8(sp)
sw a3,12(sp)
fld fa4,8(sp)
fmul.d fa5,fa5,fad
fsd fa5,8(sp)
w a0,8(sp)
w al,12(sp)
add sp,sp,16
jr ra

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 106

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

5.16 Compilation Process

GCC driver script is actually running the preprocessor, then the compiler, then the assembler
and finally the linker. If the user runs GCC with the - -save-temps argument, several intermedi-
ate files will be generated.

$ riscv64-unknown-linux-gnu-gcc relocation.c -o relocation -03 --save-temps

e relocation.i: The preprocessed source, which expands any preprocessor directives
(things like #include or #ifdef).

* relocation.s: The output of the actual compiler, which is an assembly file (a text file in
the RISC-V assembly format).

e relocation.o: The output of the assembler, which is an un-linked obiject file (an ELF file,
but not an executable ELF).

e relocation: The output of the linker, which is a linked executable (an executable ELF file).

5.17 Large Code Model Workarounds

RISC-V software currently requires that linked symbols reside within a 32-bit range. There are
two types of code models defined for RISC-V, medlow and medany. The medany code model
generates auipc/ld pairs to refer to global symbols, which allows the code to be linked at any
address, while medlow generates lui/ld pairs to refer to global symbols, which restricts the code
to be linked around address zero. They both generate 32-bit signed offsets for referring to sym-
bols, so they both restrict the generated code to being linked within a 2 GiB window. When
building software, the code model parameter is passed into the RISC-V toolchain and it defines
a method to generate the necessary instruction combinations to access global symbols within
the software program. This is done using -mcmodel=medany/medlow. For 32-bit architectures,
we use the medlow code model, while medany is used for 64-bit architectures. This is controlled
within the ‘setting.mk’ file in the freedom-e-sdk/bsp folder.

The real problem occurs when:

1. Total program size exceeds 2 GiB, which is rare

2. When global symbols within a single compiled image are required to reside in a region out-
side of the 32-bit space

Example for symbols within 32-bit address space:

MEMORY

{

ram (wxa'ri) : ORIGIN =
flash (rxai'w) : ORIGIN
}

0x80000000, LENGTH

= 0x4000
0x20400000, LENGTH =

0x1fco0000

Example for symbols outside 32-bit address space:

MEMORY

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 107

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

{

ram (wxa'!ri) : ORIGIN = 0x100000000, LENGTH = 0x4000 /* Updated ORIGIN from
0x80000000 */

flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000

}

If a software example uses the above memory map, and uses either medlow or medany code
models, it will not link successfully. Generated errors will generally contain the following phrase:

relocation truncated to fit:

5.17.1 Workaround Example #1

Even if global symbols cannot be linked with the toolchain, we can still access any 64-bit
addressable space using pointers. The following example is a straightforward approach to
accessing data within any 64-bit addressable space:

// Create defines for new memory region

#define LARGE DATA SECTION ADDRESS 0x100000000
#define LARGE DATA SECTION SIZE IN BYTES 0x4000
#define DWORD SIZE 8

int main(void) {

/R sk sk ok kR skok ok ok sk sk skok ok kok sk ok sk kokok sk sk ok kosk kot fokokok sk sk ok tokokok ko kok ok sk skokkokok sk skt kokokok ko sk kokkok ko ok kok
/* Example #1 - defining and accessing data outside 32-bit range using array

pointer */

/R sk sk ok kR sk ok ok ko sk sk skok ok kosk skt sk kokok sk sk ok kosk kot fokook sk sk ok tokokok ko ok ok sk stk ook sk kot fokokok ko sk kokokok ko ok kok

uint32 t idx;
uint64 t *data array, addr;

data array = (uint64 t *)LARGE DATA SECTION ADDRESS;
for (addr = 0, idx = 0; addr < LARGE DATA SECTION SIZE IN BYTES; addr +=
DWORD SIZE, idx++) {

// Simply writing data to our region outside of 32-bit range

data array[idx] = addr;

}

5.17.2 Workaround Example #2

Here we use an existing freedom-metal data structure to define a new region and API to
access attributes of the region.

#include <metal/memory.h> // required for data struct
// Create defines for new memory region

#define LARGE DATA SECTION ADDRESS 0x100000000

#define LARGE DATA SECTION SIZE IN BYTES 0x4000
#define DWORD SIZE 8

// Create our struct using existing metal memory type in freedom-metal

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 108

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

const struct metal memory large data mem struct;
const struct metal memory large data mem struct = {

. _base address = LARGE DATA SECTION_ ADDRESS,

. size = LARGE DATA SECTION SIZE IN BYTES,

. attrs = {.R=1, W=1, .X=0, .C=1, .A =0},
b

int main(void) {
// Example #2 - Creating data structure which defines 64-bit addressable regions,
// using existing structure type to define base addr, size, and permissions

size t large data size;

uintptr t large data base addr;

int atomics enabled, cachable enabled;
uint64 t *large data array;

_large data base addr = metal memory get base address(&large data mem struct);
_large data size = metal memory get size(&large data mem struct);

_atomics enabled = metal memory supports atomics(&large data mem struct);
_cachable enabled = metal memory is cachable(&large data mem struct);

large data array = (uint64 t *) large data base addr;
// Access our new memory region

// large data array[x] = 0x0;
// ... add functional code ...

return 0;

}

This example can be used if multiple data regions are required with different attributes. Once
the base address is assigned from the required data structure, then pointers can be used to
access memory, similar to Example #1 above. The existing struct and API format allows for mul-
tiple regions to be created easily.

5.18 Pipeline Hazards

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions
may be scheduled to avoid stalls.

5.18.1 Read-After-Write Hazards

Read-after-Write (RAW) hazards occur when an instruction tries to read a register before a pre-
ceding instruction tries to write to it. This hazard describes a situation where an instruction
refers to a result that has not been calculated or retrieved. This situation is possible because
even though an instruction was executed after a prior instruction, the prior instruction may only
have processed partly through the core pipeline.

Example:

e Instruction 1: x1 + x3is saved in x2

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 109

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

e Instruction 2: x2 + x3is saved in x4

The first instruction is calculating a value (x1 + x3) to be saved in x2. The second instruction is
going to use the value of x2 to compute a result to be saved in x4. However, in the core
pipeline, when operations are fetched for the second operation, the results from the first opera-
tion have not yet been saved.

5.18.2 Write-After-Write Hazards

Write-after-write (WAW) hazards occur when an instruction tries to write an operand before it is
written by a preceding instruction.

Example:

¢ |nstruction 1: x4 + x7 is saved in x2

e Instruction 2: x1 + x3is saved in x2
Write-back of instruction 2 must be delayed until instruction 1 finishes executing.

In general, MMIO accesses stall when there is a hazard on the result caused by either RAW or
WAW. So, instructions may be scheduled to avoid stalls.

5.19 Reading CSRs

There are several methods for reading the CSRs that are implemented in the E76-MC Core
Complex. A full list of the defined RISC-V CSRs are described in Section 5.8.2.

1. Inline assembly using csrr instruction and the register name. For example, reading the
misa CSR:

int misa;
__asm__ volatile("csrr %0, misa" : "=r" (misa));

2. Using the Freedom Metal APl METAL_CPU_GET_CSR. Again, reading the misa CSR:

int misa value;
METAL CPU GET CSR(misa,misa _value);

In the second method, the first argument is the register name and the second is the vari-
able to store the result in.

Both inline assembly and Freedom Metal APl methods can receive the CSR number instead of
its name. For example:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 110

SiFive E76-MC Core Complex Manual 21G1.01.00
Programmer’s Model

int mscratch;
METAL CPU GET CSR(0x340, mscratch value); // reading mscratch csr

Note

Accessing CSRs has to be according to the privilege level you are in. Attempting to access
a CSR in a privilege level higher than the current level of operation will result in an excep-
tion.

To access a privileged CSR, the user must switch to the appropriate privilege level. This can be
done using the following Freedom Metal API:

metal privilege drop to mode(METAL PRIVILEGE USER,
my regfile,
user_mode _entry point);

The Freedom Metal API routines and more examples located in freedom-e-sdk/software direc-
tory.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 111

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 6

Custom Instructions and CSRs

These custom instructions use the SYSTEM instruction encoding space, which is the same as the
custom CSR encoding space, but with funct3=0.

6.1 CFLUSH.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.
Only available in M-mode.
When rs1 = x0, CFLUSH.D. L1 writes back and invalidates all lines in the L1 data cache.

When rs1 !'= x0, CFLUSH.D.L1 writes back and invalidates the L1 data cache line con-
taining the virtual address in integer register rsi.

If the effective privilege mode does not have write permissions to the address in rs1, then
a store access or store page-fault exception is raised.

If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rs1 in
the write-permitted region will write back the entire cache line.

6.2 CDISCARD.D.L1

Implemented as state machine in L1 data cache, for cores with data caches.
Only available in M-mode.
Opcode 0xFC200073: with optional rs1 field in bits [19:15].

When rs1 = x0, CDISCARD.D.L1 invalidates, but does not write back, all lines in the L1
data cache. Dirty data within the cache is lost.

When rs1 # x0, CDISCARD.D.L1 invalidates, but does not write back, the L1 data cache
line containing the virtual address in integer register rs1i. Dirty data within the cache line is
lost.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 112

SiFive E76-MC Core Complex Manual 21G1.01.00
Custom Instructions and CSRs

If the effective privilege mode does not have write permissions to the address in rsi, then
a store access or store page-fault exception is raised.

If the address in rs1 is in an uncacheable region with write permissions, the instruction has
no effect but raises no exceptions.

Note that if the PMP scheme write-protects only part of a cache line, then using a value for
rsi in the write-protected region will cause an exception, whereas using a value for rs1 in
the write-permitted region will invalidate and discard the entire cache line.

6.3 CEASE

Privileged instruction only available in M-mode.
Opcode 0x30500073.
After retiring CEASE, hart will not retire another instruction until reset.

Instigates power-down sequence, which will eventually raise the cease_from_tile_X sig-
nal to the outside of the Core Complex, indicating that it is safe to power down.

6.4 PAUSE

Opcode 0x0100000F, which is a FENCE instruction with predecessor set W and null succes-
sor set. Therefore, PAUSE is a HINT instruction that executes as a no-op on all RISC-V
implementations.

This instruction may be used for more efficient idling in spin-wait loops.

This instruction causes a stall of up to 32 cycles or until a cache eviction occurs, whichever
comes first.

6.5 Branch Prediction Mode CSR

This SiFive custom extension adds an M-mode CSR to control the current branch prediction
mode, bpm at CSR 0x7C0.

The E76-MC Core Complex’s branch prediction system includes a Return Address Stack (RAS),
a Branch Target Buffer (BTB), and a Branch History Table (BHT). While branch predictors are
essential to achieve high performance in pipelined processors, they can also cause undesirable
timing variability for hard real-time systems. The bpm register provides a means to customize the
branch predictor behavior to trade average performance for a more predictable execution time.

The bpm CSR has a single, one bit field defined: Branch-Direction Prediction (bdp).

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 113

SiFive E76-MC Core Complex Manual 21G1.01.00
Custom Instructions and CSRs

6.5.1 Branch-Direction Prediction

The WARL bdp field determines the value returned by the BHT component of the branch predic-
tion system. A zero value indicates dynamic direction prediction and a non-zero value indicates
static-taken direction prediction. The BTB is cleared on any write to the bdp field and the RAS is
unaffected by writes to the bdp field.

6.6 SiFive Feature Disable CSR

The SiFive custom M-mode Feature Disable CSR is provided to enable or disable certain
microarchitectural features. In the E76-MC Core Complex, CSR 0x7C1 has been allocated for
this purpose. These features are described in Table 81.

Warning

The features that can be controlled by this CSR are subject to change or removal in future
releases. It is not advised to depend on this CSR for development.

A feature is fully enabled when the associated bit is zero. If a particular core does not support
the disabling of a feature, the corresponding bit is hardwired to zero.

On reset, all implemented bits are set to 1, disabling all features. The bootloader is responsible
for turning on all required features, and can simply write zero to turn on the maximal set of fea-
tures. SiFive’s Freedom Metal bootloader handles turning on these features; when using a cus-
tom bootloader, clearing the Feature Disable CSR must be implemented.

Note that arbitrary toggling of the Feature Disable CSR bits is neither recommended nor sup-
ported; they are only intended to be set from 1 to 0. A particular Feature Disable CSR bit is only
to be used in a very limited number of situations, as detailed in the Example Usage entry in
Table 82.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 114

SiFive E76-MC Core Complex Manual 21G1.01.00
Custom Instructions and CSRs

Feature Disable CSR

CSR 0x7C1
Bit Description
0 Disable data cache clock gating
1 Disable instruction cache clock gating
2 Disable pipeline clock gating
3 Disable speculative instruction cache refill

[8:4] Reserved

9 Suppress corrupt signal on GrantData messages
[15:10] Reserved

16 Disable short forward branch optimization

17 Disable instruction cache next-line prefetcher

[31:18] Reserved

Table 81: SiFive Feature Disable CSR

Feature Disable CSR Usage

Bit | Description | Usage
3 | Disable speculative instruction cache refill

Example Usage: A particular integration might require that execution from the System
Port range be disallowed. Startup code would first configure PMP to prevent execution
from the System Port range, followed by clearing bit 3 of the Feature Disable CSR. This
would enable speculative instruction cache refill accesses, without allowing those to
access the System Port range because PMP would prohibit such accesses.

9 | Suppress corrupt signal on GrantData messages

Example Usage 1: When running in debug mode on configurations having both ECC
and a BEU, setting bit 9 of the Feature Disable CSR will suppress debug mode errors.
Example Usage 2: Startup code could scrub errors present in RAMs at power-on, fol-
lowed by clearing bit 9 of the Feature Disable CSR to allow normal operation.

Table 82: SiFive Feature Disable CSR Usage

6.7 Other Custom Instructions

Other custom instructions may be implemented, but their functionality is not documented further
here and they should not be used in this version of the E76-MC Core Complex.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 115

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 7

Interrupts and Exceptions

This chapter describes how interrupt and exception concepts in the RISC-V architecture apply
to the E76-MC Core Complex.

7.1 Interrupt Concepts

Interrupts are asynchronous events that cause program execution to change to a specific loca-
tion in the software application to handle the interrupting event. When processing of the interrupt
is complete, program execution resumes back to the original program execution location. For
example, a timer that triggers every 10 milliseconds will cause the CPU to branch to the inter-
rupt handler, acknowledge the interrupt, and set the next 10 millisecond interval.

The E76-MC Core Complex supports machine mode interrupts.

The Core Complex also has support for the following types of RISC-V interrupts: local and
global. Local interrupts are signaled directly to an individual hart with a dedicated interrupt
exception code and fixed priority. This allows for reduced interrupt latency as no arbitration is
required to determine which hart will service a given request and no additional memory
accesses are required to determine the cause of the interrupt. Software and timer interrupts are
local interrupts generated by the Core-Local Interruptor (CLINT). The E76-MC Core Complex
contains no other local interrupt sources.

Global interrupts are routed through a Platform-Level Interrupt Controller (PLIC), which can
direct interrupts to any hart in the system via the external interrupt. Decoupling global interrupts
from the harts allow the design of the PLIC to be tailored to the platform, permitting a broad
range of attributes like the number of interrupts and the prioritization and routing schemes.

Chapter 8 describes the CLINT. Chapter 9 describes the global interrupt architecture and the
PLIC design.

7.2 Exception Concepts

Exceptions are different from interrupts in that they typically occur synchronously to the instruc-
tion execution flow, and most often are the result of an unexpected event that results in the pro-
gram to enter an exception handler. For example, if a hart is operating in supervisor mode and

attempts to access a machine mode only Control and Status Register (CSR), it will immediately

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 116

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

enter the exception handler and determine the next course of action. The exception code in the
mstatus register will hold a value of 0x2, showing that an illegal instruction exception occurred.
Based on the requirements of the system, the supervisor mode application may report an error
and/or terminate the program entirely.

There are no specific enable bits to allow exceptions to occur since they are always enabled by
default. However, early in the boot flow, software should set up mtvec.BASE to a defined value,
which contains the base address of the default exception handler. All exceptions will trap to
mtvec.BASE. Software must read the mcause CSR to determine the source of the exception,
and take appropriate action.

Synchronous exceptions that occur from within an interrupt handler will immediately cause pro-
gram execution to abort the interrupt handler and enter the exception handler. Exceptions within
an interrupt handler are usually the result of a software bug and should generally be avoided
since mepc and mcause CSRs will be overwritten from the values captured in the original inter-
rupt context.

The RISC-V defined synchronous exceptions have a priority order which may need to be con-
sidered when multiple exceptions occur simultaneously from a single instruction. Table 83
describes the synchronous exception priority order.

Priority Interrupctoi);ceptlon Description
Highest 3 | Instruction Address Breakpoint
12 | Instruction page fault
1 | Instruction access fault
2 | lllegal instruction
0 | Instruction address misaligned
8,9, 11 | Environment call
3 | Environment break
3 | Load/Store/AMO address breakpoint
6 | Store/AMO address misaligned
4 | Load address misaligned
15 | Store/AMO page fault
13 | Load page fault
7 | Store/AMO access fault
Lowest
5 | Load access fault

Table 83: Exception Priority

Refer to Table 91 for the full table of interrupt exception codes.
Data address breakpoints (watchpoints), Instruction address breakpoints, and environment

break exceptions (EBREAK) all have the same Exception code (3), but different priority, as shown
in the table above.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 117

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

Instruction address misaligned exceptions (0x0) have lower priority than other instruction
address exceptions because they are the result of control-flow instructions with misaligned tar-
gets, rather than from instruction fetch.

Some of the helpful CSRs for debugging exceptions and interrupts are described below:

CSR Description
exception | SiFive Scope signal. Indicates the moment that an exception occurs in the
write-back (commit) stage.

mcause Contains the cause value of the exception/interrupt. See Section 7.7.5 for more
description.

mepc Contains the pc where the exception occurs.

mtval If the cause is a load/store fault, this register has the value of the problematic

address. If it is an invalid instruction, it provides the instruction that the core
tried to execute.

mstatus Contains the interrupt enables, privilege modes, and general status of execu-
tion. See Section 7.7.1 for more description.
mtvec Contains the vector that the core will jump to when an exception occurs. If this

is not a valid executable value, you may get a double-exception when jumping
to the exception handler, so it is important to look at all these registers when the
exception FIRST occurs. See Section 7.7.2 for more description.

Table 84: Summary of Exception and Interrupt CSRs

7.3 Trap Concepts

The term trap describes the transfer of control in a software application, where trap handling
typically executes in a more privileged environment. For example, a particular hart contains
three privilege modes: machine, supervisor, and user. Each privilege mode has its own software
execution environment including a dedicated stack area. Additionally, each privilege mode con-
tains separate control and status registers (CSRs) for trap handling. While operating in User
mode, a context switch is required to handle an event in Supervisor mode. The software sets up
the system for a context switch, and then an ECALL instruction is executed which synchro-
nously switches control to the Environment call-from-User mode exception handler.

The default mode out of reset is Machine mode. Software begins execution at the highest privi-
lege level, which allows all CSRs and system resources to be initialized before any privilege
level changes. The steps below describe the required steps necessary to change privilege
mode from machine to user mode, on a particular design that also includes supervisor mode.

1. Interrupts should first be disabled globally by writing mstatus.MIE to O, which is the default
reset value.

2. Write mtvec CSR with the base address of the Machine mode exception handler. This is a
required step in any boot flow.

3. Write mstatus.MPP to O to set the previous mode to User which allows us to return to that
mode.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 118

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

4. Setup the Physical Memory Protection (PMP) regions to grant the required regions to user
and supervisor mode, and optionally, revoke permissions from machine mode.

5. Write stvec CSR with the base address of the supervisor mode exception handler.

6. Write medeleg register to delegate exceptions to supervisor mode. Consider ECALL and
page fault exceptions.

7. Write mstatus.FS to enable floating point (if supported).
8. Store machine mode user registers to stack or to an application specific frame pointer.
9. Write mepc with the entry point of user mode software

10. Execute mret instruction to enter user Mode.

Note

There is only one set of user registers (x1 - x31) that are used across all privilege levels, so
application software is responsible for saving and restoring state when entering and exiting
different levels.

7.4 Interrupt Block Diagram

The E76-MC Core Complex interrupt architecture is depicted in Figure 76.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 119

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

RISC-V Core IP

M-mode Software Interrupt—|

M-mode Timer Interrupt—|

M-mode External Interrupt—

PX——Global Interrupts—s PLIC Ha rt 0

Local Interrupt 0———|

Local Interrupt X———|

X

M-mode Software Interrupt—

CLINT

M-mode Timer Interrupt——

M-mode External Interrupt—

Hart 1

Local Interrupt 0———

Eﬂ Local Interrupt X————|

M-mode Software Interrupt—»|

M-mode Timer Interrupt—|

M-mode External Interrupt—»
Hart N

Local Interrupt 0———|

EE Local Interrupt X——

Figure 76: E76-MC Core Complex Interrupt Architecture Block Diagram

7.5 Local Interrupts

Software interrupts (Interrupt ID #3) are triggered by writing the memory-mapped interrupt pend-
ing register msip for a particular hart. Other harts are able to write msip to trigger a software
interrupt on any other hart in the E76-MC Core Complex. This allows for efficient interprocessor
communication. The msip register is described in Table 89.

Timer interrupts (Interrupt ID #7) are triggered when the memory-mapped register mtime is
greater than or equal to the global timebase register mtimecmp, and both registers are part of
the CLINT memory map. mtimecmp can be written by other harts to set up timer interrupts. The
mtime and mtimecmp registers are generally only available in machine mode, unless the PMP
grants user mode access to the memory-mapped region in which they reside.

Global interrupts are usually first routed to the PLIC, then into the hart using external interrupts
(Interrupt ID #11).

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 120

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

7.6 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If
mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-
rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect
the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is
cleared.

7.6.1 Interrupt Entry and Exit
When an interrupt occurs:
» The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,
effectively disabling interrupts.
« The privilege mode prior to the interrupt is encoded in mstatus.MPP.
* The current pc is copied into the mepc register, and then pc is set to the value specified by
mtvec as defined by the mtvec.MODE described in Table 87.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.
When an mret instruction is executed, the following occurs:

« The privilege mode is set to the value encoded in mstatus.MPP.
» The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.

* The pc is set to the value of mepc.
At this point, control is handed over to software.

At the software level, interrupt attributes can be applied to interrupt processing functions, as
described in Section 8.4.

The Control and Status Registers (CSRs) involved in handling RISC-V interrupts are described
in Section 7.7.

7.7 Interrupt Control and Status Registers

The E76-MC Core Complex specific implementation of interrupt CSRs is described below. For a
complete description of RISC-V interrupt behavior and how to access CSRs, please consult The
RISC-V Instruction Set Manual, Volume Il: Privileged Architecture, Version 1.10.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 121

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

7.7.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including
whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in
the E76-MC Core Complex is provided in Table 85. Note that this is not a complete description
of mstatus as it contains fields unrelated to interrupts. For the full description of mstatus,
please consult The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version
1.10.

Machine Status Register (mstatus)
CSR 0x300
Bits Field Name Attr. Description
[2:0] Reserved WPRI
3 MIE RwW Machine Interrupt Enable
[6:4] Reserved WPRI
7 MPIE RW Machine Previous Interrupt Enable
[10:8] Reserved WPRI
[12:11] MPP RW Machine Previous Privilege Mode

Table 85: Machine Status Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus. Prior to writing mstatus.MIE=1, itis
recommended to first enable interrupts in mie.

7.7.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and
setting the mode by which the E76-MC Core Complex will process interrupts. For Direct and
Vectored modes, the interrupt processing mode is defined in the MODE field of the mtvec register.
The mtvec register is described in Table 86, and the mtvec .MODE field is described in Table 87.

Machine Trap Vector Register (mtvec)

CSR 0x305
Bits Field Name Attr. Description
[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the E76-MC Core Complex
supported modes is described in Table 87.
[31:2] BASE[31:2] WARL Interrupt Vector Base Address.

Operating in Direct Mode requires 4-byte
alignment.

Operating in Vectored Mode requires
128-byte alignment.

Table 86: Machine Trap Vector Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 122

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

MODE Field Encoding mtvec . MODE

Value Mode Description
0x0 Direct All asynchronous interrupts and synchronous
exceptions set pc to BASE.
Ox1 Vectored Exceptions set pc to BASE, interrupts set pc to BASE
+ 4 x mcause.EXCCODE.
>0x2 Reserved

Table 87: Encoding of mtvec.MODE

Mode Direct

When operating in direct mode, all interrupts and exceptions trap to the mtvec.BASE address.
Inside the trap handler, software must read the mcause register to determine what triggered the
trap. The mcause register is described in Table 90.

When operating in Direct Mode, BASE must be 4-byte aligned.

Mode Vectored

While operating in vectored mode, interrupts set the pc to mtvec.BASE + 4 x exception code
(mcause .EXCCODE). For example, if a machine timer interrupt is taken, the pc is set to
mtvec.BASE + 0x1C. Typically, the trap vector table is populated with jump instructions to trans-
fer control to interrupt-specific trap handlers.

In vectored interrupt mode, BASE must be 128-byte aligned.

All machine external interrupts (global interrupts) are mapped to exception code 11. Thus, when
interrupt vectoring is enabled, the pc is set to address mtvec.BASE + 0x2C for any global inter-
rupt.

7.7.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-
ter is described in Table 88.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 123

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

Machine Interrupt Enable Register (mie)
CSR 0x304
Bits Field Name Attr. Description
[2:0] Reserved WPRI
3 MSIE RW Machine Software Interrupt Enable
[6:4] Reserved WPRI
7 MTIE RW Machine Timer Interrupt Enable
[10:8] Reserved WPRI
11 MEIE RW Machine External Interrupt Enable
[31:12] Reserved WPRI

Table 88: Machine Interrupt Enable Register

7.7.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.
The mip register is described in Table 89.

Machine Interrupt Pending Register (mip)
CSR 0x344
Bits Field Name Attr. Description
[2:0] Reserved WIRI
3 MSIP RO Machine Software Interrupt Pending
[6:4] Reserved WIRI
7 MTIP RO Machine Timer Interrupt Pending
[10:8] Reserved WIRI
11 MEIP RO Machine External Interrupt Pending
[31:12] Reserved WIRI

Table 89: Machine Interrupt Pending Register

7.7.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that
caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of
mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same
encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to
be set to 6x8000_0007. mcause is also used to indicate the cause of synchronous exceptions, in
which case the most-significant bit of mcause is set to 0.

See Table 90 for more details about the mcause register. Refer to Table 91 for a list of synchro-
nous exception codes.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 124

SiFive E76-MC Core Complex Manual
Interrupts and Exceptions

21G1.01.00

Machine Cause Register (mcause)

CSR 0x342

Bits Field Name Attr. Description

[9:0] EXCCODE WLRL A code identifying the last exception.

[30:10] Reserved WLRL
31 Interrupt WARL 1, if the trap was caused by an interrupt; 0
otherwise.
Table 90: Machine Cause Register
Interrupt Exception Code Description
1 0-2 | Reserved
1 3 | Machine software interrupt
1 4-6 | Reserved
1 7 | Machine timer interrupt
1 8-10 | Reserved
1 11 | Machine external interrupt
1 12-13 | Reserved
1 14 | Debug interrupt
1 >15 | Reserved
0 0 | Instruction address misaligned
0 1 | Instruction access fault
0 2 | lllegal instruction
0 3 | Breakpoint
0 4 | Load address misaligned
0 5 | Load access fault
0 6 | Store/AMO address misaligned
0 7 | Store/AMO access fault
0 8 | Environment call from U-mode
0 9-10 | Reserved
0 11 | Environment call from M-mode
0 12-13 | Reserved
0 14 | Debug
0 215 | Reserved
Table 91: mcause Exception Codes

Note that there are scenarios where a misaligned load or store will generate an access excep-
tion instead of an address-misaligned exception. The access exception is raised when the mis-
aligned access should not be emulated in a trap handler, e.g., emulating an access in an 1/0
region, as such emulation could cause undesirable side-effects.

7.7.6 Minimum Interrupt Configuration

The minimum configuration needed to configure an interrupt is shown below.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

125

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

« Write mtvec to configure the interrupt mode and the base address for the interrupt vector
table.

< Enable interrupts in memory mapped PLIC register space. The CLINT does not contain
interrupt enable bits.

« Write mie CSR to enable the software, timer, and external interrupt enables for each privi-
lege mode.

» Write mstatus to enable interrupts globally for each supported privilege mode.

7.8 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 9.
E76-MC Core Complex interrupts are prioritized as follows, in decreasing order of priority:

¢ Machine external interrupts
« Machine software interrupts

¢ Machine timer interrupts

7.9 Interrupt Latency

Interrupt latency for the E76-MC Core Complex is four external_source_for_core_N_clock
cycles, as counted by the number of cycles it takes from signaling of the interrupt to the hart to
the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of three clock cycles, where
the PLIC is clocked by clock. This means that the total latency, in cycles, for a global interrupt
is: 4 + 3 x (external_source_for_core_N_clock Hz + clock Hz). This is a best case cycle
count and assumes the handler is cached or located in ITIM. It does not take into account addi-
tional latency from a peripheral source.

7.10 Non-Maskable Interrupt

The rnmi (resumable non-maskable interrupt) interrupt signal is a level-sensitive input to the
hart. Non-maskable interrupts have higher priority than any other interrupt or exception on the
hart and cannot be disabled by software. Specifically, they are not disabled by clearing the
mstatus.mie register.

7.10.1 Handler Addresses

The NMI has an associated exception trap handler address. This address is set by external
input signals, described in the E76-MC Core Complex User Guide.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 126

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

7.10.2 RNMI CSRs

These M-mode CSRs enable a resumable non-maskable interrupt (RNMI).

Number | Name Description
0x350 | mnscratch | Resumable Non-maskable scratch register
0x351 | mnepc Resumable Non-maskable EPC value
0x352 | mncause Resumable Non-maskable cause value
0x353 | mnstatus | Resumable Non-maskable status

Table 92: RNMI CSRs

e The mnscratch CSR holds a 32-bit read-write register which enables the NMI trap handler
to save and restore the context that was interrupted.

e The mnepc CSR is a 32-bit read-write register which on entry to the NMI trap handler holds
the PC of the instruction that took the interrupt. The lowest bit of mnepc is hardwired to
zero.

* The mncause CSR holds the reason for the NMI, with bit 31 set to 1, and the NMI cause
encoded in the least-significant bits or zero if NMI causes are not supported. The lower bits
of mncause, defined as the exception_code, are as follows:

mncause | NMI Cause Function
1 Reserved Reserved
2 rnmi input pin | External rnmi_N input
3 Reserved Reserved

Table 93: mncause.exception_code Fields

* The mnstatus CSR holds a two-bit field which on entry to the trap handler holds the privi-
lege mode of the interrupted context encoded in the same manner as mstatus.mpp.

7.10.3 MNRET Instruction

This M-mode only instruction uses the values in mnepc and mnstatus to return to the program
counter and privileged mode of the interrupted context respectively. This instruction also sets
the internal rnmie state bits.

Encoding is same as MRET except with bit 30 set (i.e., funct7=0111000).

7.10.4 RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type of
RNMI to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus
CSR. An internal microarchitectural state bit rnmie is cleared to indicate that processor is in an

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 127

SiFive E76-MC Core Complex Manual 21G1.01.00
Interrupts and Exceptions

RNMI handler and cannot take a new RNMI interrupt. The internal rnmie bit when clear also
disables all other interrupts.

Note

These interrupts are called non-maskable because software cannot mask the interrupts,
but for correct operation other instances of the same interrupt must be held off until the
handler is completed, hence the internal state bit.

The RNMI handler can resume original execution using the new MNRET instruction (described
in Section 7.10.3), which restores the PC from mnepc, the privilege mode from mnstatus, and
also sets the internal rnmie state bit, which reenables other interrupts.

If the hart encounters an exception while the rnmie bit is clear, the exception state is written to
mepc and mcause, mstatus.mpp is set to M-mode, and the hart jumps to the RNMI exception
handler address.

Note

Traps in the RNMI handler can only be resumed if they occur while the handler was servic-
ing an interrupt that occured outside of machine-mode.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 128

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 8

Core-Local Interruptor (CLINT)

This chapter describes the operation of the Core-Local Interruptor (CLINT). The E76-MC Core
Complex CLINT complies with The RISC-V Instruction Set Manual, Volume II: Privileged Archi-
tecture, Version 1.10.

5 HART 0
CLINT
Software Interrupt, ID: 3
Local Interrupts, ID: 16...X Timer Interrupt, ID: 7

X =XLEN
External Interrupt, ID: 11

Figure 77: CLINT Block Diagram

The CLINT has a small footprint and provides software, timer, and external interrupts directly to
the hart. The CLINT block also holds memory-mapped control and status registers associated
with software and timer interrupts.

8.1 CLINT Priorities and Preemption

The CLINT has a fixed priority scheme based on interrupt ID, and nested interrupts (preemp-
tion) within a given privilege level is not supported. Higher privilege levels may preempt lower
privilege levels, however. The CLINT offers two modes of operation, Direct mode and Vectored
mode.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 129

SiFive E76-MC Core Complex Manual 21G1.01.00
Core-Local Interruptor (CLINT)

In Direct mode, all interrupts and exceptions trap to mtvec.BASE. In Vectored mode, exceptions
trap to mtvec.BASE, but interrupts will jump directly to their vector table index. See Section 7.7.2
for more information about mtvec . BASE.

8.2 CLINT Vector Table

mtvec + (4 * X)
CLINT

e BT Machine Mode
mivec + 0x3¢ Interrupt Vector
mtvec + 0x38 Ta.bl e

mtvec + 0x34

mtvec + 0x30

mtvec + 0x2C

mivec + 0x28 Local Interrupts, ID: 16...X
mivec + 0x24 External Interrupt, ID: 11
mtvec + 0x20

mivec + Ox1C Timer Interrupt, ID: 7
mivec + 08 Software Interrupt, ID: 3
mtvec + 0x14

mtvec + 0x10 Reserved

mtvec + Ox0C

mtvec + 0x08

mtvec + 0x04 Vector Table Base Address

mtvec + (4 * Interrupt ID)

mtvec + 0x00

Figure 78: CLINT Interrupts and Vector Table
The CLINT vector table is populated with jump instructions, since hardware jumps to the index
in the vector table first, then subsequently jumps to the handler. All exception types trap to the
first entry in the table, which is mtvec.BASE.

An example CLINT vector table is shown below.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 130

SiFive E76-MC Core Complex Manual
Core-Local Interruptor (CLINT)

.weak default_exception_handler
.balign 4, @
.global default_exception_handler

.weak software_handler
.balign 4, @
.global software_handler

.weak timer_handler
.balign 4, @
.global timer_handler

.weak external_handler
.balign 4, @
.global external_handler

.option norvc

.weak _ mtvec_clint_wvector_table
#if _ riscv_xlen == 32

.balign 128, @

#else

.balign 256, @

#endif

.global _ mtvec_clint_wvector_table
_ mitvec_clint_vector_table:

IRQ @:
J
IRQ 1:
J
IRQ 2:
J
IRQ 3:
j
IRQ 4:
J
IRQ 5:
3
IRQ 6:
J
IRQ 7:
J
IRQ 8:
j
IRQ 9:
j
IRQ_18:
3
IRQ 11:
j
IRQ 12:
3
IRQ _13:
3
IRQ_14:
j
IRQ_15:
3
Figure 79:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

default_exception_handler
default_vector_handler
default_vector_handler
software_handler
default_vector_handler
default_vector_handler
default_vector_handler
timer_handler
default_wvector_handler
default_vector_handler
default_wvector_handler
external_handler
default_wvector_handler
default_wvector_handler
default_vector_handler

default_wvector_handler

CLINT Vector Table Example

21G1.01.00

131

SiFive E76-MC Core Complex Manual 21G1.01.00
Core-Local Interruptor (CLINT)

8.3 CLINT Interrupt Sources

The E76-MC Core Complex supports the standard RISC-V software, timer, and external inter-
rupts. These interrupt inputs are exposed at the top-level via the local_interrupts signals.
Any unused local_interrupts inputs should be tied to logic 0. These signals are positive-level
triggered.

See the E76-MC Core Complex User Manual for a description of this interrupt signal.

CLINT Interrupt IDs are provided in Table 94.

E76-MC Core Complex Interrupt IDs
ID Interrupt Notes
0-2 Reserved
3 msip Machine Software Interrupt
4-6 Reserved
7 mtip Machine Timer Interrupt
8-10 Reserved
11 meip Machine External Interrupt
12-15 Reserved

Table 94: E76-MC Core Complex Interrupt IDs

8.4 CLINT Interrupt Attribute

To help with efficiency of save and restore context, interrupt attributes can be applied to func-
tions used for interrupt handling.

void __ attribute_ ((interrupt))
software_handler (void) {
// handler code

}
11 11
12 void software_handler (void) { =) 12 void __attribute__ ((interrupt))
13 addi =p,sp,-16 13 software_handler (void) {
14 14 addi sp,sp,-32
15 int my_isr_handler_flag = 1; 15 su a5,28(sp)
16 1i as,1 16
17 sw a5,12(sp) 17 int my_isr_handler_flag = 1;
18 18 1i as5,1
19 3 19 =sw a5,12(=p)
28 nop 28
21 addi sp,sp,16 3] 21}
22 ret 22 nop
23 23 1w a5,28(sp)
24 24 addi sp,sp,32
25 25 mret
& TR

Figure 80: CLINT Interrupt Attribute Example

This attribute will save and restore registers that are used within the handler, and insert an mret
instruction at the end of the handler.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 132

SiFive E76-MC Core Complex Manual 21G1.01.00
Core-Local Interruptor (CLINT)

8.5 CLINT Memory Map

Table 95 shows the memory map for CLINT on the E76-MC Core Complex. Note that there are
no enable bits for specific interrupts within the CLINT memory map, as the enables for these
interrupts reside in the mie CSR for each interrupt, and the mstatus.mie CSR bit, which
enables all machine interrupts globally. See Section 7.7.3 for a description of the interrupt
enable bits in the mie CSR, and Section 7.7.4 for a description of the interrupt pending bits in
the mip CSR.

Address Width | Attr. Description Notes
0x0200_0000 | 4B RW | msip for hart O MSIP Registers (1-bit wide)
0x0200_0004 | 4B RW | msip for hart 1
0x0200_0008 | 4B RW | msip for hart 2
0x0200_000C | 4B RW | msip for hart 3
0x0200_0010 Reserved

OXx0200_3FFF

0x0200_4000 | 8B RW | mtimecmp for hart 0 | MTIMECMP Registers
0x0200_4008 | 8B RW | mtimecmp for hart 1

0x0200_4010 | 8B RW | mtimecmp for hart 2

0x0200_4018 | 8B RW | mtimecmp for hart 3

0x0200_4020 Reserved

0x0200_BFF7
0x0200_BFF8 | 8B RW | mtime Timer Register
0x0200_C000 Reserved

Table 95: CLINT Register Map

8.6 Register Descriptions

This section describes the functionality of the memory-mapped registers in the CLINT.

8.6.1 MSIP Register

Machine mode software interrupts are generated by writing to the memory-mapped control reg-
ister msip. Each msip register is a 32-bit wide WARL register, where the upper 31 bits are tied
to 0. The least-significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip
register are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as
harts may write each other’s msip bits to effect interprocessor interrupts.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 133

SiFive E76-MC Core Complex Manual 21G1.01.00
Core-Local Interruptor (CLINT)

8.6.2 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the
rtc_toggle signal, which is described in the E76-MC Core Complex User Guide. A timer inter-
rupt is pending whenever mtime is greater than or equal to the value in the mtimecmp register.
The timer interrupt is reflected in the mtip bit of the mip register, described in Chapter 7.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 134

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 9

Platform-Level Interrupt Controller
(PLIC)

This chapter describes the operation of the Platform-Level Interrupt Controller (PLIC) on the
E76-MC Core Complex. The PLIC complies with The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, Version 1.10 and can support a maximum of 127 external interrupt
sources with 7 priority levels.

The E76-MC Core Complex PLIC resides in the clock timing domain, allowing for relaxed tim-

ing requirements. The latency of global interrupts, as perceived by a hart, increases with the
ratio of the external_source_for_core_N_clock frequency and the clock frequency.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 135

SiFive E76-MC Core Complex Manual
Platform-Level Interrupt Controller (PLIC)

21G1.01.00

CLINT

HART 0

D - PLIC
Global Interrupts
Local Interrupts, ID: 16...X

Software Interrupt, ID: 3
Timer Interrupt, ID: 7

External Interrupt, ID: 11

HART N

Figure 81: PLIC Multi-Core Block Diagram

9.1 Memory Map

The memory map for the E76-MC Core Complex PLIC control registers is shown in Table 96.
The PLIC memory map only supports aligned 32-bit memory accesses.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

136

SiFive E76-MC Core Complex Manual
Platform-Level Interrupt Controller (PLIC)

21G1.01.00

threshold

Address Width | Attr. Description Notes
OX0COO_0000 Reserved
0x0C00_0004 | 4B RW | Source 1 priority _
See Section 9.3 for more
— information
0x0COO_O1FC | 4B RW | Source 127 priority
OX0CO0_0200 Reserved
0x0C00_1000 | 4B RO | Start of pending array _
See Section 9.4 for more
- information
0x0CO0_100C | 4B RO | Last word of pending array
0Xx0C00_1010 Reserved
0x0CO0_2000 | 4B RW | Start Hart 0 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_200C | 4B RW | End Hart 0 M-Mode interrupt
enables
0X0CO0_2010 Reserved
0x0CO0_2080 | 4B RW | Start Hart 1 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_208C | 4B RW | End Hart 1 M-Mode interrupt
enables
0X0CO0_2090 Reserved
0x0C00_2100 | 4B RW | Start Hart 2 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_210C | 4B RW | End Hart 2 M-Mode interrupt
enables
0x0C00_2110 Reserved
0x0C00_2180 | 4B RW | Start Hart 3 M-Mode interrupt
enables .
See Section 9.5 for more
- information
0x0C00_218C | 4B RW | End Hart 3 M-Mode interrupt
enables
OXx0CO0_2190 Reserved
0x0C20_0000 | 4B RW | Hart 0 M-Mode priority See Section 9.6 for more

information

Table 96: PLIC Memory Map

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

137

SiFive E76-MC Core Complex Manual
Platform-Level Interrupt Controller (PLIC)

21G1.01.00

Address Width | Attr. Description Notes

0x0C20_0004 | 4B RW | Hart 0 M-Mode claim/com- See Section 9.7 for more
plete information

0x0C20_0008 Reserved

0x0C20_1000 | 4B RW | Hart 1 M-Mode priority See Section 9.6 for more
threshold information

0x0C20_1004 | 4B RW | Hart 1 M-Mode claim/com- See Section 9.7 for more
plete information

0x0C20_1008 Reserved

0x0C20_2000 | 4B RW | Hart 2 M-Mode priority See Section 9.6 for more
threshold information

0x0C20_2004 | 4B RW | Hart 2 M-Mode claim/com- See Section 9.7 for more
plete information

0x0C20_2008 Reserved

0x0C20_3000 | 4B RW | Hart 3 M-Mode priority See Section 9.6 for more
threshold information

0x0C20_3004 | 4B RW | Hart 3 M-Mode claim/com- See Section 9.7 for more

plete

information

0x0C20_3008

Reserved

Ox0C40_0000

End of PLIC Memory Map

9.2

Table 96: PLIC Memory Map

Interrupt Sources

The E76-MC Core Complex has a total of 127 external global interrupt sources, in addition to
the local interrupts described in Table 94.

Note

In the RISC-V Platform-Level Interrupt Controller Specification, interrupt source 0 (ID 0) is

unused, so the first usable PLIC Interrupt ID has a value of 1.

Table 97 describes the mapping of external global interrupts to its corresponding top-level
global_interrupts signal bit. This signal is positive-level triggered and not configurable. See
the E76-MC Core Complex User Guide for further description of global_interrupts.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 138

SiFive E76-MC Core Complex Manual 21G1.01.00
Platform-Level Interrupt Controller (PLIC)

global_interrupts Signal | PLIC Interrupt ID | PLIC Pending / Enable Register
global_interrupts[0] 1 pendingi[1] / enable1[1]*
global_interrupts[1] 2 pendingl[2] / enablel[2]
global interrupts[2] 3 pending1[3] / enablel[3]
global_interrupts[126] | 127 | pending4[31] / enable4[31]
*pending1[0] and enable1[0] are unused

Table 97: Mapping of global_interrupts Signal Bits to PLIC Interrupt ID

9.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped
priority register. The E76-MC Core Complex supports 7 levels of priority. A priority value of O
is reserved to mean "never interrupt” and effectively disables the interrupt. Priority 1 is the low-
est active priority, and priority 7 is the highest. Ties between global interrupts of the same prior-
ity are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.
See Table 98 for the detailed register description.

PLIC Interrupt Priority Register (priority)
Base Address 0x0CO0_0000 + 4 x Interrupt ID
Bits Field Name Attr. Rst. Description
[2:0] Priority RW X Global interrupt priority
[31:3] Reserved RO 0x0

Table 98: PLIC Interrupt Priority Register

9.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the
pending array, organized as 4 words of 32 bits. The pending bit for interrupt ID IV is stored in bit
(N mod 32) of word (IN/32). As such, the E76-MC Core Complex has 4 interrupt pending

registers. Bit 0 of word 0, which represents the non-existent interrupt source 0, is hardwired to
zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-
ing a claim as described in Section 9.7.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 139

SiFive E76-MC Core Complex Manual 21G1.01.00
Platform-Level Interrupt Controller (PLIC)

PLIC Interrupt Pending Register 1 (pending1)
Base Address 0x0CO0_1000
Bits Field Name Attr. Rst. Description
0 Interrupt O Pend- RO 0x0 Non-existent global interrupt O is hard-
ing wired to zero
1 Interrupt 1 Pend- RO 0x0 Pending bit for global interrupt 1
ing
2 Interrupt 2 Pend- RO 0x0 Pending bit for global interrupt 2
ing
31 Interrupt 31 Pend- RO 0x0 Pending bit for global interrupt 31
ing

Table 99: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 4 (pending4)
Base Address 0x0C00_100C
Bits Field Name Attr. Rst. Description
0 Interrupt 96 Pend- RO 0x0 Pending bit for global interrupt 96
ing
31 Interrupt 127 RO 0x0 Pending bit for global interrupt 127
Pending

Table 100: PLIC Interrupt Pending Register 4

9.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enable registers.
The enable registers are accessed as a contiguous array of 4 x 32-bit words, packed the same
way as the pending bits. Bit 0 of enable word O represents the non-existent interrupt ID 0 and is
hardwired to 0.

Only 32-bit word accesses are supported by the enables array in SiFive RV32 systems.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 140

SiFive E76-MC Core Complex Manual 21G1.01.00

Platform-Level Interrupt Controller (PLIC)

PLIC Interrupt Enable Register 1 for Hart 0 M-Mode (enablel)
Base Address 0x0CO0_2000

Bits Field Name Attr. Rst. Description

0 Interrupt O Enable RO 0x0 Non-existent global interrupt O is hard-

wired to zero

1 Interrupt 1 Enable RwW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

31 Interrupt 31 RW X Enable bit for global interrupt 31

Enable

Table 101: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 4 for Hart 0 M-Mode (enable4)
Base Address 0Xx0C00_200C
Bits Field Name Attr. Rst. Description
0 Interrupt 96 RW X Enable bit for global interrupt 96
Enable
31 Interrupt 127 RW X Enable bit for global interrupt 127
Enable

Table 102: PLIC Interrupt Enable Register 4 for Hart 0 M-Mode

9.6 Priority Thresholds

The E76-MC Core Complex supports setting of an interrupt priority threshold via the threshold
register. The threshold is a WARL field, where the E76-MC Core Complex supports a maxi-
mum threshold of 7.

The E76-MC Core Complex masks all PLIC interrupts of a priority less than or equal to
threshold. For example, a threshold value of zero permits all interrupts with non-zero priority,
whereas a value of 7 masks all interrupts. If the threshold register contains a value of 5, all
PLIC interrupt configured with priorities from 1 through 5 will not be allowed to propagate to the
CPU.

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0Xx0C20_0000
Bits Field Name Attr. Rst. Description
[2:0] Threshold RwW X Sets the priority threshold
[31:3] Reserved RO 0x0

Table 103: PLIC Interrupt Priority Threshold Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

141

SiFive E76-MC Core Complex Manual 21G1.01.00
Platform-Level Interrupt Controller (PLIC)

9.7 Interrupt Claim Process

A E76-MC Core Complex hart can perform an interrupt claim by reading the claim_complete
register (Table 104), which returns the ID of the highest-priority pending interrupt or zero if there
is no pending interrupt. A successful claim also atomically clears the corresponding pending bit
on the interrupt source.

A E76-MC Core Complex hart can perform a claim at any time, even if the MEIP bit in its mip
(Table 89) register is not set.

The claim operation is not affected by the setting of the priority threshold register.

9.8 Interrupt Completion

A E76-MC Core Complex hart signals it has completed executing an interrupt handler by writing
the interrupt ID it received from the claim to the claim_complete register (Table 104). The PLIC
does not check whether the completion ID is the same as the last claim ID for that target. If the
completion ID does not match an interrupt source that is currently enabled for the target, the
completion is silently ignored.

PLIC Claim/Complete Register for Hart 0 M-Mode (claim_complete)

Base Address 0x0C20_0004
Bits Field Name Attr. Rst. Description
[31:0] Interrupt Claim/ RW X A read of zero indicates that no inter-
Complete for Hart rupts are pending. A non-zero read
0 M-Mode contains the id of the highest pending
interrupt. A write to this register signals
completion of the interrupt ID written.

Table 104: PLIC Claim/Complete Register for Hart 0 M-Mode

The PLIC cannot forward a new interrupt to a hart that has claimed an interrupt, but has not yet
finished the complete step of the interrupt handler. Thus, the PLIC does not support preemption
of global interrupts to an individual hart.

Interrupt IDs for global interrupts routed through the PLIC are independent of the interrupt IDs
for local interrupts. The PLIC handler may check for additional pending global interrupts once
the initial claim/complete process has finished, prior to exiting the handler. This method could
save additional PLIC save/restore context for global interrupts.

9.9 Example PLIC Interrupt Handler

Since the PLIC interfaces with the CPU through external interrupt #11, the external handler
must contain an additional claim/complete step that is used to handshake with the PLIC logic.

void external_handler() {

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 142

SiFive E76-MC Core Complex Manual 21G1.01.00
Platform-Level Interrupt Controller (PLIC)

//get the highest priority pending PLIC interrupt
uint32_t int_num = plic.claim_complete;

//branch to handler
plic_handler[int_num]();

//complete interrupt by writing interrupt number back to PLIC
plic.claim_complete = int_num;

// Add additional checks for PLIC pending here, if desired
1

If a CPU reads claim_complete and it returns 0, the interrupt does not require processing, and
thus write-back of the claim/complete is not necessary.

The plic_handler[]() routine shown above demonstrates one method to implement a soft-
ware table where the offset of the function that resides within the table is determined by the
PLIC interrupt ID. The PLIC interrupt ID is unique to the PLIC, in that it is completely indepen-
dent of the interrupt IDs of local interrupts.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 143

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 10

TileLink Error Device

The Error Device is a TileLink slave that responds to all requests with a TileLink denied error
and all reads with a corrupt error. It has no registers. The entire memory range discards writes
and returns zeros on read. Both operation acknolwedgements carry an error indication.

The Error Device serves a dual role. Internally, it is used as a landing pad for illegal off-chip
requests. However, it is also useful for testing software handling of bus errors.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 144

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 11

Level 2 Cache Controller

This chapter describes the functionality of the Level 2 Cache Controller used in the E76-MC
Core Complex.

11.1 Level 2 Cache Controller Overview

The SiFive Level 2 Cache Controller is used to provide access to fast copies of memory for
masters in a Core Complex. The Level 2 Cache Controller also acts as a directory-based
coherency manager.

The SiFive Level 2 Cache Controller offers extensive flexibility, as it allows for several features
in addition to the Level 2 Cache functionality. These include memory-mapped access to L2
Cache RAM for disabled cache ways, scratchpad functionality, way masking and locking, ECC
support with error tracking statistics, error injection, and interrupt signaling capabilities.

These features are described in Section 11.2.

11.2 Functional Description

The E76-MC Core Complex L2 Cache is a 512 KiB 16-way set-associative cache. It has a line
size of 64 bytes and is read/write-allocate with a random replacement policy. The cache oper-
ates in write-back mode only. The L2 Cache is composed of 2 banks. This subdivision into
banks helps facilitate increased available bandwidth between CPU masters and the L2 Cache,
as each bank has its own dedicated 64-bit TL-C inner port. As such, multiple requests to differ-
ent banks may proceed in parallel.

The outer port of the L2 Cache Controller is a 128-bit TL-C port shared among all banks and
typically connected to a DDR controller. The outer Memory Port of the L2 Cache Controller is
shared among all banks and typically connected to cacheable memory. The overall organization
of the L2 Cache Controller is depicted in Figure 82.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 145

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

TileLink Bus
TL-C TL-C
Bank 0 . Bank N
SiFive L2 Cache Controller \
Memory Bank
Port SetN |

—{Set 1 |
—Set 0

- Way 0: 64B Cache Block

- Way 1: 64B Cache Block

L Way N: 64B Cache Block

Figure 82: Organization of the SiFive L2 Cache Controller

11.2.1 Way Enable and the L2 Loosely-Integrated Memory (L2 LIM)

The SiFive Level 2 Cache Controller allows for its SRAMs to act either as direct-addressed
memory in the Core Complex address space or as a cache that is controlled by the L2 Cache
Controller, which can contain a copy of any cacheable address.

When cache ways are disabled, they are addressable in the L2 Loosely-Integrated Memory (L2
LIM) address space as described in the E76-MC Core Complex memory map in Section 4.2.
The L2 LIM is an uncacheable port into unused L2 SRAM and provides deterministic access
time. It is neither cached by the L1 data cache nor memory backed, as it is just a dedicated soft-
ware-addressable, low latency, uncached memory. Fetching instructions or data from the L2 LIM
provides deterministic behavior equivalent to an L2 Cache hit, with no possibility of a cache
miss. Accesses to the L2 LIM are always given priority over cache way accesses, which target
the same L2 Cache bank.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 146

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

Out of reset, all ways, except for way 0, are disabled. Cache ways can be enabled by writing to
the WayEnable register described in Section 11.4.2. Once a cache way is enabled, it cannot be
disabled unless the E76-MC Core Complex is reset. The highest numbered L2 cache way is
mapped to the lowest L2 LIM address space, and way 1 occupies the highest L2 LIM address
range. As L2 cache ways are enabled, the size of the L2 LIM address space shrinks. The map-
ping of L2 cache ways to L2 LIM address space is shown in Figure 83, where N is the number
of L2 cache ways, each of size 32 KiB (0x0000_8000).

L2 Cache Size

Reserved (Way 0)
(N-1) * Way Size
Way 1
(N-2) * Way Size
2 * Way Size
Way N-2
Way Size
Way N-1
0x0

Offset from LIM base

Figure 83: Mapping of L2 Cache Ways to L2 LIM Addresses

11.2.2 Way Masking and Locking

The SiFive L2 Cache Controller can control the amount of cache memory a CPU master is able
to allocate into by using the wayMaskN register described in Section 11.4.4. Note that WwayMaskN
registers only affect allocations, and reads can still occur to ways that are masked. As such, it
becomes possible to lock down specific cache ways by masking them in all wayMaskN registers.
In this scenario, all masters can still read data in the locked cache ways but cannot evict data.

The following example shows how to lock the L2 cache ways:
int global data = 0; // Handy to help avoid compiler optimizing away code.

void lock data into way(char data, int nbytes, int way) {
// 1. Initialization: we will lock one way of data into the cache via core M

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 147

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

// Use U54 numbers -- fast simulator.

int masterid® = 5; / Core's first L2 master ID for DCache. /

int masteridl = 6; / Core's second L2 master ID for DCache, if any. */
#define MAX L2 MASTER IDS 8

// 2. Masking: set up the waymask registers: core M to only allow the selected way,
all other cores to disallow that way.

// These defines should be provided via <sifive/platform.h>

volatile uint64 t * masterid® waymask = (uint64 t*)(CCACHE CTRL ADDR +

WAYMASK OFFSET) + masterido;

volatile uint64 t * masteridl waymask = (uint64 t*)(CCACHE CTRL ADDR +

WAYMASK OFFSET) + masteridl;

// Remember the old waymask for both of these; we will alter them before restoring.
uint64 t old waymask0 = *masterid@ waymask;

uint64 t old waymaskl = *masteridl waymask;

// Assign the restrictive one-way masks to the locking master:
*masterid® waymask = (l<<way);
*masteridl waymask = (l<<way);

// Clear that way from all other masters.

for (int id = 0; id <= MAX L2 MASTER IDS; id++) {

if ((id == masterid@) || (id == masteridl)) continue;

volatile uint64 t * waymask = (uint64 t*)(CCACHE CTRL ADDR + WAYMASK OFFSET) + id;
*waymask &= ~(1l<<way); // Clear the newly-locked way from allocation by all other
masters.

}

// 3. Locking: on our locking core, access all of the data to be locked, carefully so
the compiler cannot optimize it away.

int running total;

for (int offset = 0; offset < nbytes; offset += 64) { // Hard-coded to 64-byte cache
lines

running total += data[offset];

global data = running total; // So the compiler cannot optimize away the accesses to
datal]

// 4. Restoring: now restore the locking core's waymasks, but ensure we do not allow
any new allocations into this way.

*masterid0® waymask = old waymask0® & ~(l<<way);

*masteridl waymask = old waymaskl & ~(l<<way);

}

/*

If this is to be called to lock several portions of an array, make sure to

alter the data pointer, like the following (the sizeof() approach makes it so

that the code below works regardless of whether data[] is an array of bytes, words,
doubles, or structs):

for (way = 0; way < 7; way++) { // Lock into ways 0..6
lock data into way(&data[way*bytes per way/sizeof(data[0])], bytes per way, way);
}

Note that one way must always be kept as cacheable by all masters.
*/

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 148

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

11.2.3 L2 Zero Device

The SiFive L2 Cache Controller has a dedicated scratchpad address region that allows for allo-
cation into the cache using an address range that is not memory backed. This address region is
denoted as the L2 Zero Device in the Section 4.2 memory map. Writes to the scratchpad region
allocate into cache ways that are enabled and not masked.

A Zero Device ignores write data and always returns zero on reads. The E76-MC Core Complex
provides a Zero Device behind the L2 Cache, similar to the Memory Port. When combined with
locked L2 cache ways, which prevent eviction, locations within a Zero Device’s address range
appear to retain their value. This provides a mechanism to create L1 cacheable memory that is
essentially backed by L2 SRAM until the way is released (and the value resets to zero). The L2
Zero Device is cacheable like the Memory Port. However, if dirty data is evicted and a write-
back to the L2 Zero Device occurs, the Zero Device will discard the write data. Therefore, care
must be taken with the scratchpad, as there is no memory backing this address space. Cache
evictions from addresses in the scratchpad result in data loss.

The main advantage of the L2 Zero Device over the L2 LIM is that it is a cacheable region allow-
ing for data stored to the scratchpad to also be cached in a master’s L1 data cache, which
results in faster access.

To understand the difference between the L2 LIM and the L2 Zero Device, consider Figure 84.

Notice that the L2 LIM accesses the same blocks of memory as the main path into the L2
Cache, whereas the L2 Zero Device sits behind L2 Cache much like the Memory Port:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 149

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

SiFive Core(s)

SBus

main/fast path:
cache, locked
ways access

L2 LIM path: J
sideband/slow
LIM access D

L2 Cache ™~ L2 Control Port

MBus

L2 Zero Memory
Device Port

Figure 84: Difference between L2 LIM and L2 Zero Device
The recommended procedure for using the L2 Zero Device is as follows:

1. Use the wayEnable register to enable the desired cache ways

2. Designate a single master that will allocate into the scratchpad. For this procedure, we des-
ignate this master as Master S. All other masters (CPU and non-CPU) are denoted as
Masters N.

3. Masters N: Write to the wayMaskN register to mask the ways that are to be used for the
scratchpad. This prevents Masters N from evicting cache lines in the designated scratch-
pad ways.

4. Master S: Write to the WayMaskN register to mask all ways except the ways that are to be
used for the scratchpad. At this point, Master S should only be able to allocate into the
cache ways meant to be used as a scratchpad.

Master S: Write scratchpad data into the L2 Zero Device address range
Master S: Repeat steps 4 and 5 for each way to be used as scratchpad

7. Master S: Use the WwayMaskN register to mask the scratchpad ways for Master S so that it is
no longer able to evict cache lines from the designated scratchpad ways

8. At this point, the scratchpad ways should contain the scratchpad data, with all masters able
to read, write, and execute from this address space, and no masters able to evict the
scratchpad contents

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 150

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

11.2.4 L2 Features Access Summary
Table 105 describes the L2 features as a function of Way Enable and Way Mask.

Access Base
Way Enable | Way Mask Address L2 Feature

0 X 0x0800_0000 | LIM

1 0 0x8000_0000 | Locked Ways — Fast Read access

1 0 0x0A00_0000 | Zero Device — Fast Read access from
scratchpad

1 1 0x8000_0000 | Functional Cache, Locked Ways — Write
data mode

1 1 0x0A00_0000 | Zero Device — Write data to scratchpad

Table 105: L2 Features Access Summary

11.2.5 L2 Prefetcher

The SiFive L2 Cache Controller contains a prefetcher that allows the L2 to perform accesses to
memory based on the patterns of data accesses made by the harts in the Core Complex. For
instance, if a hart is reading every 100th byte of a large array and accesses are missing the L1
data cache, the prefetcher will detect this. It will then allocate the appropriate memory
addresses to the L2 Cache so subsequent accesses to the array will hit in the L2 Cache. This
reduces overall access time to the array and improves performance of the application.

Operation

The L2 Prefetcher can monitor 8 different data streams per hart, where a stream consists of a
base address and a stride between memory addresses. Prefetches are automatically issued to
the memory system when possible and a prefetch queue of 16 entries holds the accesses
before they are issued. The range of a prefetch (or maximum stride length) in terms of cache
lines is set by the Prefetch Advanced Control Register window field. For instance, if this is set to
0x4, then streams with a stride 256 bytes or greater will be ignored.

The initial number of prefetches (or prefetch distance) made per stream is set by the Prefetch
Control Register dist field. The prefetching distance will adapt based on the success of the
prefetching and the overall range of prefetching. If a hart continues to make direct accesses
which match the stride of the stream, then additional prefetches will be made, and the prefetch
distance can increase. It's possible that the direct accesses made by a hart will be too fast for
the prefetcher, and the hart will have to wait for the L2 to populate. When this occurs, the L2
Prefetcher will increase the prefetch distance (i.e. emit more prefetches) to minimize the chance
of this occurring. The threshold to increase the prefetching distance is set by the Prefetch
Advanced Control Register hitMSHRThrd field.

The maximum number of prefetches emitted for a stream is limited by the Prefetch Control Reg-

ister maxAllowedDist field. The prefetch distance will increase gradually, but at times this may
not be fast enough. The speed of the ramp-up from the initial distance to the maximum is man-

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 151

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

aged automatically by the prefetcher. The Prefetch Control Register 1inToExpThrd setting can
be used to fine-tune this adaptive ramp-up. The smaller the value of this field, the faster the
prefetcher will reach the maximum prefetch distance.

Prefetches are issued only if there are idle L2 Miss Status Holding Registers (MSHRS). The
Prefetch Advanced Control Register qFullnessThrd value is used to control when the
prefetcher will stop issuing hints to the memory system. This 4-bit field allows the total number
of MSHRs in the L2 Cache to be represented in fractions of 1/16th. For instance, a threshold
value of 0xC means that if 75% of the MSHRs are allocated, prefetches will be stalled until the
number of MSHRs in use drops below 75% available. This setting allows the prefetcher to be
tuned such that the direct accesses made by the Core Complex (from harts and Front Port mas-
ters) aren’t stalled by the prefetcher.

The prefetcher monitors both reads and writes to memory and the strides can either be incre-
menting or decrementing addresses. Prefetching is disabled at reset, and must be enabled
using the Prefetch Control Register en bit.

Retiring streams

It's unlikely that a prefetch stream will continue indefinitely for the life of an application, so the L2
Prefetcher accommodates two methods to retire old streams. This allows new streams to be
tracked. A stream can be retired when the Ageout mechanism is enabled via the Prefetch Con-
trol Register ageOutEn bit. When this is set, the L2 Prefetcher will track the number of direct
loads which don’t match the stream. When the number of stream misses exceeds the value set
in the Prefetch Control Register numLdsToAgeOut field, the stream will be retired.

The second way for a stream to be retired is through successfully hitting in the L2 cache without
the need for prefetching. If enough consecutive accesses hit in the L2 cache which were not
prefetched, then there is no need for the prefetcher to continue monitoring the stream. The
Prefetch Advanced Control Register hitCacheThrd field sets this threshold for retiring the
stream.

4 KiB Page Boundaries

The L2 Prefetcher can be programmed to cross 4 KiB page boundaries of memory. This is use-
ful in an application environment in which there is no OS page protection, or where OS page
protection can be ignored. When the Prefetch Control Register crossPageEn bit is set, prefetch-
ing can cross 4 KiB boundaries. When the Prefetch Control Register crossPageEn bit is clear,
the Prefetch Control Register crossPageOptmbDis bit controls the prefetch behavior. If the bit is
clear, then the prefetcher pauses if a 4 KiB boundary is crossed. Prefetching will resume if the
hart continues to make accesses that match the stride in the new 4 KiB page of memory. If the
Prefetch Control Register crossPageOptmDis bit is set, then prefetching is terminated for the
stream and the entry is made available for a new stream.

The L2 Prefetch Control Registers (Prefetch Control Register and Prefetch Advanced Control
Register) are described in Section 11.4.5.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 152

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

11.2.6 Coherence

The SiFive L2 Cache is partially inclusive of the L1 instruction cache and is inclusive of the L1
data cache. When a block of data is allocated to the L1 cache, it is also allocated to the L2
Cache. When a block is evicted from the L1, the corresponding block in the L2 is then updated
and marked dirty.

To understand how coherence is managed differently in the L2 Cache with respect to the L1
instruction and data caches, consider the following rules:

Only an instruction cache allocation from the Memory Port will land in the L2 Cache
An eviction from the L2 Cache does not cause an eviction from the instruction cache
An eviction from the instruction cache does not cause L2 Cache eviction either

A discard from the data cache does not invalidate the L2 Cache

o M w0 DR

Following a flush in the L2 Cache, the L2 Cache will back probe lines in L1 data cache

11.3 Memory Map

The L2 Cache Controller memory map is shown in Table 106.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 153

SiFive E76-MC Core Complex Manual

Level 2 Cache Controller

21G1.01.00

Offset Name Description

0x0000 | Config Information about the Cache Configuration

0x0008 | WayEnable The index of the largest way which has been enabled. May
only be increased.

0x0040 | ECCInjectError | Injectan ECC Error

0x0100 | DirECCFixLow The low 32-bits of the most recent address to fail ECC

0x0104 | DirECCFixHigh The high 32-bits of the most recent address to fail ECC

0x0108 | DirECCFixCount Reports the number of times an ECC error occured

0x0120 | DirECCFailLow The low 32-bits of the most recent address to fail ECC

0x0124 | DirECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x0128 | DirECCFailCount | Reports the number of times an ECC error occured

0x0140 | DatECCFixLow The low 32-bits of the most recent address to fail ECC

0x0144 | DatECCFixHigh The high 32-bits of the most recent address to fail ECC

0x0148 | DatECCFixCount | Reports the number of times an ECC error occured

0x0160 | DatECCFaillow The low 32-bits of the most recent address to fail ECC

0x0164 | DatECCFailHigh | The high 32-bits of the most recent address to fail ECC

0x0168 | DatECCFailCount | Reports the number of times an ECC error occured

0x0240 | Flush32 Flush the physical address equal to the 32-bit written data <<
4 from the cache

0x0800 | WayMasko Master 0 way enable mask register

0x0808 | WayMask1 Master 1 way enable mask register

0x0810 | WayMask?2 Master 2 way enable mask register

0x0818 | WayMask3 Master 3 way enable mask register

0x0820 | WayMask4 Master 4 way enable mask register

0x0828 | WayMask5 Master 5 way enable mask register

0x0830 | WayMask6 Master 6 way enable mask register

0x0838 | WayMask?7 Master 7 way enable mask register

0x0840 | WayMasks Master 8 way enable mask register

0x0848 | WayMask9 Master 9 way enable mask register

0x0850 | WayMask10 Master 10 way enable mask register

0x0858 | WayMask11l Master 11 way enable mask register

0x0860 | WayMask12 Master 12 way enable mask register

0x0868 | WayMask13 Master 13 way enable mask register

0x0870 | WayMask14 Master 14 way enable mask register

0x0878 | WayMask15 Master 15 way enable mask register

0x0880 | WayMask16 Master 16 way enable mask register

0x2000 | pmEventSelect® | performance monitor event select 0

0x2008 | pmEventSelectl | performance monitor event select 1

0x2010 | pmEventSelect2 | performance monitor event select 2

0x2018 | pmEventSelect3 | performance monitor event select 3

0x2020 | pmEventSelect4 | performance monitor event select 4

0x2028 | pmEventSelect5 | performance monitor event select 5

Table 106: Register offsets within the L2 Cache Controller Control Memory Map

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

154

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

Offset Name Description
0x2800 | pmClientFilter | performance counter client disable mask
0x3000 | pmEventCounter® | performance monitor event counter O
0x3008 | pmEventCounterl | performance monitor event counter 1
0x3010 | pmEventCounter2 | performance monitor event counter 2
0x3018 | pmEventCounter3 | performance monitor event counter 3
0x3020 | pmEventCounter4 | performance monitor event counter 4
0x3028 | pmEventCounter5 | performance monitor event counter 5

Table 106: Register offsets within the L2 Cache Controller Control Memory Map

Note that the E76-MC Core Complex does not have ECC enabled on the L2 Cache Controller.
The ECC registers are still present but have no effect on hardware nor are they affected by
hardware; however, these registers can be manipulated by software.

11.4 Register Descriptions

This section describes the functionality of the memory-mapped registers in the Level 2 Cache
Controller.

11.4.1 Cache Configuration Register (Config)

The config Register can be used to programmatically determine information regarding the
cache size and organization.

Cache Configuration Register (Config)
Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] Banks RO 0x2 Number of banks in the cache

[15:8] ways RO 0x10 Number of ways per bank
[23:16] 1gSets RO 0x8 Base-2 logarithm of the sets per bank
[31:24] 1gBlockBytes RO 0x6 Base-2 logarithm of the bytes per cache

block

Table 107: Cache Configuration Register

11.4.2 Way Enable Register (WayEnable)

The wayEnable register determines which ways of the Level 2 Cache Controller are enabled as
cache. Cache ways that are not enabled are mapped into the E76-MC Core Complex’s L2 LIM
(Loosely-Integrated Memory) as described in the memory map in Section 4.2.

This register is initialized to 0 on reset and may only be increased. This means that, out of reset,

only a single L2 cache way is enabled, as one cache way must always remain enabled. Once a
cache way is enabled, the only way to map it back into the L2 LIM address space is by a reset.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 155

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

Way Enable Register (WayEnable)

Register Offset 0x8
Bits Field Name Attr. Rst. Description
[7:0] WayEnable RwW 0x0 The index of the largest way which has
been enabled. May only be increased.

Table 108: Way Enable Register

11.4.3 Cache Flush Register (Flush32)

The E76-MC Core Complex L2 Cache Controller provides a register that can be used for flush-
ing specific cache blocks.

Flush32 is a 32-bit write-only register that flushes a cache block containing the written address
left shifted by 4 bytes. All bits must be written in a single access for the flush to take effect.

The flush operation performs a write-back and invalidate, meaning the contents are written to
memory and L2 and L1 cache lines are then invalidated.

11.4.4 Way Mask Registers (WwayMask*)

The wayMaskN register allows a master connected to the L2 Cache Controller to specify which
L2 Cache ways can be evicted by Master N. Masters can still access memory cached in
masked ways. The mapping between masters and their L2 master IDs is shown in Table 110.

At least one cache way must be enabled. It is recommended to set/clear bits in this register
using atomic operations.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 156

SiFive E76-MC Core Complex Manual
Level 2 Cache Controller

21G1.01.00

Way Mask 0 Register (WayMasko)

Table 110: Master IDs in the L2 Cache Controller

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

Register Offset 0x800
Bits Field Name Attr. Rst. Description
0 WayMaskO_0 RW 0x1 Enable way 0 for Master 0
1 WayMask0_1 RW 0x1 Enable way 1 for Master O
2 WayMasko_2 RwW 0x1 Enable way 2 for Master 0
3 WayMaskO_3 RW 0x1 Enable way 3 for Master 0
4 WayMask0_4 RW 0x1 Enable way 4 for Master 0
5 WayMask0_5 RW 0x1 Enable way 5 for Master 0
6 WayMask0_6 RwW 0x1 Enable way 6 for Master 0
7 WayMasko_7 RW 0x1 Enable way 7 for Master O
8 WayMask0_8 RW 0x1 Enable way 8 for Master 0
9 WayMasko_9 RwW 0x1 Enable way 9 for Master 0
10 WayMask0_10 RW 0x1 Enable way 10 for Master O
11 WayMasko_11 RW 0x1 Enable way 11 for Master O
12 WayMaskO_12 RW 0x1 Enable way 12 for Master 0
13 WayMask0_13 RW 0x1 Enable way 13 for Master O
14 WayMask0_14 RW 0x1 Enable way 14 for Master 0
15 WayMask0_15 RW 0x1 Enable way 15 for Master 0
Table 109: Way Mask 0 Register
Master ID Description

0 Debug

1 AXIl4 Front Port ID#0

2 AXIl4 Front Port ID#1

3 AXIl4 Front Port ID#2

4 AXIl4 Front Port ID#3

5 Hart O Fetch Unit

6 Hart 0 D-Cache

7 Hart O L2 Prefetcher

8 Hart 1 Fetch Unit

9 Hart 1 D-Cache

10 Hart 1 L2 Prefetcher

11 Hart 2 Fetch Unit

12 Hart 2 D-Cache

13 Hart 2 L2 Prefetcher

14 Hart 3 Fetch Unit

15 Hart 3 D-Cache

16 Hart 3 L2 Prefetcher

157

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

11.4.5 L2 Prefetch Control Registers

The L2 Prefetcher control registers basicCtrl and additionalCtrl are described in the below
tables.

Prefetch Control Register

Bits Field Name Attr. Rst. Description
0 en RwW 0x0 Enable hardware prefetcher.
1 crossPageOptmDis RwW 0x0 Only works when crossPageEn == 0.

Cross-page optimization disable:

0 - Entry goes into Pause state while
crossing page boundary. Next time
when the demand miss happens on the
same page, it doesn’t need to train

again.
1 - The entry is invalidated in case of a
cross-page.
[7:2] dist RW 0x3 Prefetch distance (size is HW genera-

tion time configurable).

[13:8] maxAllowedDist RW 0x3 Maximum allowed distance (size is HW
generation time configurable).

[19:14] 1inToExpThrd RW 0x5 Linear-to-exponential threshold (size is
HW generation time configurable).

20 ageOutEn RwW 0x5 Ageout mechanism enable.
[27:21] numLdsToAgeOut RW 0x40 Number of non-matching loads to edge

out an entry (size is HW generation
time configurable).
28 crossPageEn RW 0x0 Enable prefetches to cross-pages.

When crossPageEn == 1, the bit value
of crossPageOptmDis does not matter,
the prefetches will cross 4K boundary.

[31:29] Reserved

Table 111: basicCtrl Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 158

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

Prefetch Advanced Control Register
Bits Field Name Attr. Rst. Description
[3:0] gFullnessThrd RW OXE Threshold number of Fullness (L2
MSHRs used/total available) to stop
sending hits.
[8:4] hitCacheThrd RwW 0x5 Threshold number of CacheHits for
evicting SPF entry.
[12:9] hitMSHRThrd RW 0x2 Threshold number of MSHR hits for
increasing SPF distance.
[18:13] window RW 0x6 Size of the comparison window for
address matching.
[31:19] Reserved

Table 112: additionalcCtrl Register

11.5 Procedure to Flush the L2 Cache

This section describes how to flush the L2 Cache using the Zero Device. Alternatively, there is a
flush-by-address function in the L2 Controller space, described in Section 11.4.3. Note that
using the Zero Device to flush the entire cache is faster than flushing by address.

To flush a single index+way:

1. Write wayMaskN to allow evictions from only the specified way
2. Issue aload (or store) to an address in the L2 Zero Device region that corresponds to the
specified index

To flush the entire L2 cache:

1. Write wayMaskN to allow evictions from only way O

2. lIssue a series of loads (or stores) to addresses in the L2 Zero Device region that corre-
spond to each L2 index (i.e., one load/store per 64 B, total of (way-size-in-bytes/64) loads
or stores).

3. Write wayMaskN to allow evictions from only way 1
4. Repeat step 2

. Repeat steps 3 and 4, moving through each way of the cache, until all ways have been
flushed.

To flush a range of physical addresses much larger than a cache way:
1. Flush the whole cache as shown above

To flush a range of physical addresses not much larger than a cache way:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 159

SiFive E76-MC Core Complex Manual 21G1.01.00
Level 2 Cache Controller

1. Use the existing flush-by-address mechanism and iterate over the addresses, or write
wWayMaskN to allow evictions from only way O

2. lIssue a series of loads (or stores) to addresses in the L2 Zero Device region that corre-
spond to the L2 index associated with each 64 B chunk within the specified address range
(i.e., one load/store per 64 B, total of (specified-address-range-in-bytes/64) load or stores).

3. Write wayMaskN to allow evictions from only way 1

Repeat step 2

. Repeat steps 3 and 4, moving through each way of the cache, until all ways have been
flushed (this should all be done with no intervening stores that could create new dirty lines)

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 160

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 12

Power Management

The following chapter describes power modes and establishes flows for powering up, powering
down, and resetting the hardware of the E76-MC Core Complex.

12.1 Power Modes

Power modes include normal run mode and wait-for-interrupt clock gating mode using the wWFI
instruction. Additionally, there is a full power down mode supported via the CEASE instruction.
These modes are covered in detail below.

12.2 Run Mode

The hart is fully operational in run mode, and SiFive designs include the option to include
coarse-grained architectural clock gating. When this feature is enabled in the hart, the I-Cache,
D-Cache, integer pipeline, Debug Logic, and Floating Point Unit (FPU) each contain their own
clock gate module. The clock gating feature will enable automatic clock gating of functional units
when they are inactive, and allow the hart to gate its own clock(s) based on activity. To further
reduce power while in run mode, users may choose to reduce
external_source_for_core_N_clock, which is required to be changed synchronously to the
rest of the clocks in the system. It is important to note that the clock relationships with the rest of
the system must still be maintained if external_source_for_core_N_clock is reduced.

12.3 WEFI Clock Gate Mode

WEFI clock gating mode can be entered by executing the WFI instruction. The assembly-level
instruction is simply wfi, and executing the C-code method using the GCC compiler can be
acomplished with asm("wFI").

12.3.1 WFI Wake Up

Wake up from a WFI occurs when the hart receives any interrupt. Depending on the software
configuration, the hart will either immediately enter the interrupt handler, or resume execution on
the instruction immediately after the WFI.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 161

SiFive E76-MC Core Complex Manual 21G1.01.00
Power Management

If interrupts are enabled and mstatus.MIE=1, then the hart will wake when an interrupt is
enabled and becomes pending, and immediately enter the interrupt handler. Upon exit from the
interrupt handler, program execution will resume at the instruction following the wF1I.

If interrupts are enabled but mstatus.MIE=0, then the hart will wake when an interrupt is
enabled and becomes pending, but will not enter the interrupt handler. It will simply resume at
the instruction immediately after the WFI in this case.

To prevent an interrupt source from waking a hart, the enable bit for that interrupt must be writ-
ten to @ prior to executing the WFI instruction. If any interrupts are pending upon executing a WFI
instruction, then the WFI is effectively treated as a NOP instruction.

Refer to Chapter 7 for more detail on interrupt configuration.

12.4 CEASE Instruction for Power Down

To fully power down, follow the steps described in Section 12.9, where the last step is to exe-
cute a CEASE instruction. Once the CEASE instruction is executed, the core will not retire another
instruction until reset. The CEASE opcode is 0x30500073 and can be implemented in either
assembly or C code. To create an assembly-level function using GCC, consider the following
example.

.global cease

.type _cease, @function
_cease:

.word 0x30500073

ret

The next example demonstrates how to implement the CEASE instruction within a function in C
code.

static inline void cease()

{

}

asm__ volatile (".word 0x30500073" : : : "memory"); // CEASE

12.5 Hardware Reset

The following list summarizes the hardware reset values required by the RISC-V Privileged
Specification and applies to all SiFive designs.

1. Privilege mode is set to machine mode.
2. mstatus.MIE and mstatus.MPRV are required to be O.

3. The misa register holds the full set of supported extensions for that implementation, and
misa.MXL defaults to the widest supported ISA available, referred to as MXLEN.

4. The pc is set to the implementation specific reset vector.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 162

SiFive E76-MC Core Complex Manual 21G1.01.00
Power Management

5. The mcause register is set to 0x0 at reset.
6. The PMP configuration fields for address matching mode (A) and Lock (L) are set to 0,
which defaults to no protection for any privilege level.

The internal state of the rest of the system should be completed by software early in the boot
flow.

12.6 Early Boot Flow

For the early stages of boot, some of the first things software must consider are listed below:
* The global pointer (gp or x3) user register should be initialized to the __global_pointer$
linker generated symbol and not changed at any point in the application program.

e The stack pointer (sp or x2) user register should be also set up as a standard part of the
boot flow.

» All other user registers (x1, x4 - x31) can be written to O upon initial power-on.

« The mtvec register holds the default exception handler base address, so it is important to
set up this register early in the boot flow so it points to a properly aligned, valid exception
handler location.

e Zero out the bss section, and copy data sections into RAM areas as needed.

12.7 Interrupt State During Early Boot

Since mstatus.MIE defaults to 0, all interrupts are disabled globally out of reset. Prior to
enabling interrupts globally through mstatus.MIE, consider the following:

« Ensure no timer interrupts are pending by checking the mip.MTIP bit. The mtime register is
0 out of reset, and starts running immediately. However, the mt imecmp register does not
have a reset value.

If no timer interrupt is required, leave mie .MTIE equal to O prior to enabling global interrupt
with mstatus.MIE.

If the application requires a timer interrupt, write mtimecmp to a value in the future for the
next timer interrupt before enabling mstatus.MIE.

« Write the remaining bits in the mie CSR to the desired value to enable interrupts based on
the requirements of the system. This register is not defined to have a reset value.

« Each msip register in the Core-Local Interruptor (CLINT) or Core-Local Interrupt Controller
(CLIC) address space is reset to 0, so no specific initialization is required for local software
interrupts.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 163

SiFive E76-MC Core Complex Manual 21G1.01.00
Power Management

Since msip is memory-mapped, any hart in the system may trigger a software interrupt on
another hart, so this should be considered during the boot flow on a multi-hart system.

If a Platform-Level Interrupt Controller (PLIC) exists, check the PLIC pending status. The
PLIC memory mapped pending bits are read-only, so the pending status should be cleared
at the source if they reset to a non-zero status. Then, enable the PLIC interrupts as
required by the system prior to enabling interrupts in the system via mstatus.MIE.

If an L2 Cache or Bus-Error Unit (BEU) is present, these interrupt IDs begin at 128, so the
enable bits may lie in a different region of the memory map than other PLIC enable bits in
the design.

12.8 Other Boot Time Considerations

Write 0 to enable the appropriate bits in the Feature Disable CSR as described in Table 81.

Ensure the remaining bits in the mstatus CSR are written to the desired application spe-
cific configuration at boot time.

If a design includes user and supervisor privilege levels, initialize medeleg and mideleg
registers to 0 until supervisor-level trap handling is set up correctly using stvec.

The mcause, mepc, and mtval registers hold important information in the event of a syn-
chronous exception. If the synchronous exception handler forces reset in the application,
the contents of these registers can be checked to understand root cause.

The PMP address and configuration CSRs are required to be initialized if user or supervi-
sor privilege levels are part of the design. By default, user and supervisor modes have no
permissions to the memory map unless explicitly granted by the PMP.

The mcycle CSR is a 64-bit counter on both RV32 and RV64 systems, and it counts the
number of cycles executed by the hart. It has an arbitrary value after reset and can be writ-
ten as needed by the application.

Instructions retired can be counted by the minstret register, and this also has an arbitrary
value after reset. This can be written to any given value.

The mhpmeventX CSR selects which hardware events to count, where the count is reflected
in mhpmcounterX. At any point, the mhpmcounterX registers can be directly written to reset
their value when the mhpmeventX register has the proper event selected.

There is no requirement for boot time initialization to any of the registers within the Debug
Module, unless there is an application specific reason to do so.

All other CSRs during boot time initialization should be considered based on system and
application requirements.

12.9 Power-Down Flow

Designate one core as primary and all others as secondary. For our Core IP product, coordi-
nation with an External Agent is required.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 164

SiFive E76-MC Core Complex Manual 21G1.01.00
Power Management

1. External Agent: Wait for communication from primary core to initiate the following steps:

Stop sending inbound traffic (both transactions and interrupts) into the core complex.
Wait until all outstanding requests to the Core Complex are completed, then

Wait until cease_from_tile_X is high for the primary core and all secondary cores.

e o T p

Once cease_from_tile_X is high for primary core and all secondary cores, apply
reset to the whole core complex.

2. Primary core:

a. The following sequence should be executed in machine mode and NOT out of a
remote ITIM/DTIM.

b. Communicate with external agent to initiate cease power-down sequence.

c. Poll external agent until steps 1.a and 1.b are completed.

d. Disable all interrupts except those related to bus errors/memory corruption, and IPIs
(if using enabled IPI to coordinate power-down sequence among cores).

i. Copy contents of any TIMs/LIMs into external memory.

ii. Primary core: if there is an L2 cache, flush it (all addresses at which cacheable
physical memory exists).

iii. Ifthere is no L2 cache, but there is a data cache, flush it using full-cache variant
of CFLUSH.D. L1, if available; or per-line variant if not

e. Inform all secondary cores to proceed.
f. Wait until cease_from_tile_X is high for all secondary cores. Examples of how this
can be accomplished:
i. Have an off-core-complex memory-mapped register that tracks the state of the
cease_from_tile_X signals. Primary core polls this register.

ii. Wire the cease_from_tile_X signals back into interrupt wires. Corresponding
interrupts can be disabled along with all others in the first step. Primary core polls
the interrupt-pending bits for those interrupts.

g. Disable all interrupts.
h. Execute CEASE instruction.
3. Secondary cores:
a. The following sequence should be executed in machine mode and NOT out of a
remote ITIM/DTIM.

b. Execute in an idle loop for notification sent in step 2.vii (could be via polling on an
MMIO-accessible mailbox, polling on an IPI (disabled), or waiting on an IPI (enabled)).

c. Disable all interrupts except those related to bus errors/memory corruption, and IPIs
(if using enabled IPI to coordinate power-down sequence among cores).

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 165

SiFive E76-MC Core Complex Manual 21G1.01.00
Power Management

d. Copy contents of any TIMs/LIMs into external memory.

e. Ifthere is no L2 cache but there is a data cache, flush it using full-cache variant of
CFLUSH.D.L1 if available, or per-line variant if not:

f. Disable all interrupts.

g. Execute CEASE instruction.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 166

SiFive E76-MC Core Complex Manual 21G1.01.00

Chapter 13

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC-V
Debug Specification, Version 0.13. Currently only interactive debug and hardware breakpoints
are supported.

13.1 Debug Module

The Debug Module (DM) handles nearly all the functions related to debugging. It is a slave to
both the Debug Module Interface (DMI) coming from the probe and a TileLink bus coming from
the core(s). From the perspective of the core, the DM appears as a 4K block in the memory
map. The DM memory map as seen from the perspective of the core is shown in Table 114 and
the register map from the perspecitve of the DMI is shown in Table 113.

Most of the DM is clocked by the TileLink (system) clock. The dmcontrol register is accessible
when the system clock is not running, mainly to be able to write to haltreq while the core is in
reset due to ndreset. Doing so generates a debug interrupt and will interrupt the selected core
immediately once it is out of reset or interrupt it during a WFI instruction.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 167

SiFive E76-MC Core Complex Manual

Debug
A dlzllrgss Name Description
0x11 | dmstatus Debug Module Status. See Table 125 for more information.
0x10 | dmcontrol Debug Module Control. See Table 126 for more information.
0x12 | hartinfo Hart Information. See Table 127 for more information.
0x14 | hawindowsel | Read/Write. Select which window of up to 32 harts is visible in
hawindow. Not used by SiFive since all SiFive systems have
less than 32 harts.
0x15 | hawindow Read/Write. Window of 32 harts to be selected, in addition to
the one selected by hartsel. Bit O corresponds to hart 0. A 1
will select the corresponding hart.
0x40 | haltsum@ Read-only. Halt Summary O: Bit n reads 1 if hart n is halted.
0x13 | haltsuml Read-only. Only present on systems with >32 harts, so nhot
used by SiFive.
0x16 | abstractcs Abstract Control and Status. See Table 128 for more informa-
tion.
0x18 | abstractauto | Select whether access to particular DATA or PROGBUF loca-
tions will re-execute the last command. Used for block trans-
fers or other repeating commands. See Table 130 for more
information.
0x17 | command Initiate abstract command. See Table 129 for more informa-
tion.
0x04-0XxOF | data® - Read/Write DATA registers. 32-bit SiFive cores have 1 data
dataill register, 64-bit cores have 2.
0x20-0x2F | progbufo - Read/Write PROGBUF registers.
progbufi5
0x32 | dmcs2 Fields to set up and read back Halt Group or Resume Group
configuration. Present by default on systems with more than 1
hart or with any external triggers. See Table 131 for more
information.
0x37-0x3F | shXXXX Read/Write. System Bus Access.

Table 113: Debug Module Register Map Seen from the Debug Module Interface

From the point of view of the core, the DM appears as a 4K block of memory. It is mapped into
low memory so that memory references can use addresses relative to the $zero register.

Note

Logic in the core prevents non-debug-mode code from accessing the debug region. How-
ever, this logic does not intercept accesses from the Front Port. This means that it is possi-
ble for Front Port accesses to interfere with a debug session by writing to various offsets
within the debug region. If this occurs, the user may need to restart the debugger or reset
the core to continue a debug session. To work around this, do not access the debug mod-
ule memory region via the Front Port.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

21G1.01.00

168

SiFive E76-MC Core Complex Manual

Debug

21G1.01.00

TL Address

Name

Attr.

Description

0x100

HALTED

\Wie

Written with hartid by ROM code when hart gets a
debug interrupt or reenters ROM due to EBREAK. Sets
halted[hartid]. If an abstract command was running,
writing this also clears busy.

0x104

GOING

wO

Written by ROM code when it begins executing a com-
mand started by FLAGS[hartid].go. Clears
FLAGS[hartid].go.

0x108

RESUMING

WO

Written with hartid by hart when it is about to resume.
Sets resumeack[hartid] and clears halted[hartid]
and FLAGS[hartid].resume.

0x16C

EXCEPTION

wO

Written by hart when it encounters an exception in
debug mode. Sets cmderr to "exception”.

0x300

WHERETO

RO

JAL to ABSTRACT. This opcode is constructed by DM
hardware and is needed because ABSTRACT is not a
fixed address (depends on number of PROGBUF words
selected in the configuration).

contiguous

ABSTRACT

RO

2 words constructed by DM hardware based on abstract
command written from DTM.

+0: If transfer set, construct instruction to load/store
specific register to/from DATA[0] (32 bits) or DATA[1:0]
(64 bits), else NOP.

+4: If postexec set, then NOP to fall thru and execute
PROGBUF, else EBREAK to return to ROM park loop.

contiguous

PROGBUF

RW

Configurable number (typically 16, max 16) of R/W
words to be filled in by debugger and executed by hatrt.

contiguous

IMPEBREAK

RO

Optional - If present, reads as EBREAK to return to
ROM park loop when execution runs off the end of
PROGBUF.

In E2, default is 2-word PROGBUF and IMPEBREAK
present. Most others have 16-word PROGBUF and no
IMPEBREAK.

0Xx380-0x3BF

DATA

RW

Configurable number (1 for 32-bit or 2 for 64-bit, max
12) of R/W words intended for use for data transfer
between debugger and hart. Since it is contiguous with
PROGBUF, the debugger may use DATA as an exten-
sion of PROGBUF.

OXx400-0x7FF

FLAGS

RO

One byte flag per hart.

Bit 0 (go): Set by writing an abstract command, cleared
by ROM write to GOING. ROM will jump to WHERETO.

Table 114: Debug Module Memory Map from the Perspective of the Core

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

169

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

TL Address Name Attr. | Description

Bit 1 (resume): Set by writing 1 to resumereq[hartid].
Cleared by ROM write of hartid to RESUMING. ROM
restores s0 then executes dret.

0x800-0XFFF ROM RO | Debug interrupt or EBREAK enters at 0x800, saves s0,
writes hartid to HALTED, then busy-waits for
FLAGS[hartid] > O.

If FLAGS[hartid].go, write 0 to GOING, then jump to
WHERETO.

Else write hartid to RESUMING, then execute dret to
return to user program.

ROM Source Code: https://github.com/chipsalliance/
rocket-chip/blob/master/scripts/debug_rom/
debug_rom.S

Table 114: Debug Module Memory Map from the Perspective of the Core

13.2 Trace and Debug Registers

This section describes the per hart Trace and Debug Registers (TDRs), which are mapped into
the CSR space as follows:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 170

https://github.com/chipsalliance/rocket-chip/blob/master/scripts/debug_rom/debug_rom.S
https://github.com/chipsalliance/rocket-chip/blob/master/scripts/debug_rom/debug_rom.S
https://github.com/chipsalliance/rocket-chip/blob/master/scripts/debug_rom/debug_rom.S

SiFive E76-MC Core Complex Manual

21G1.01.00

Debug
Allowed
CSR Name Access Description
Mode
0x7B0O | dcsr Debug | Debug Control and Status. See Table 116 for more informa-
tion.
0x7B1 | dpc Debug | Debug PC. Stores execution address just before debug
exception and to return to at dret.
0x7B2 | dscratche | Debug | Debug Scratch Register O.
Ox7A0 | tselect Debug, | Trigger Registers. Most configs implement 2, 4, or 8 trig-
Machine | gers.
Ox7AL | tdatal I\I/?eb#g, « tselect (0x7A0) selects a trigger. tdata1 is mcontrol,
achiné tdataz2 is the address for comparison.
Ox7A2 | tdata2 Debug,
Machine » Triggers are all type 2 (address/data).
Ox7A3 | tdata3 Debug, + select is fixed at 0 meaning all triggers compare
Machine

addresses only (no data value).

* Load, store, execute, U-mode, S-mode, and M-mode

filters all supported.

e timing is fixed at 0 meaning breaks happen just
before the event.

» size is fixed at 0 meaning accesses of any size that
cover any part of the trigger address range will fire.

* match values:

o 0xO0 - Single address

o 0x1 - Power-of-2 range, limited to 64 bytes in
SiFive implementations.

o 0x2 - = address
o 0x3 - < address

o Others not supported by SiFive.

* chain is supported. When set, this trigger and the next
must match at the same time to fire. Typically used for

a range breakpoint using 2 triggers, one with
match=0x2 and one with match=0x3. This is not a
sequential trigger.

Table 115: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect
and tdatail-3 registers are accessible from either debug mode or machine mode.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

171

SiFive E76-MC Core Complex Manual

Debug

21G1.01.00

13.2.1 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is
described in The RISC-V Debug Specification, Version 0.13.

Debug Control and Status Register (dcsr)
CSR 0x7B0O
Bits Field Name Attr. Description
[1:0] prv RW Privilege level of processor prior to debug
exception and to return to at dret.
2 step RW Set to 0x1 to single-step.
3 nmip RO Non-maskable interrupt pending. Not used
by SiFive.
4 mprven WARL Not used by SiFive.
[7:5] cause RO Indicates cause of most recent debug excep-
tion.
8 stoptime WARL | Ox1 will stop timers in debug mode. Not used
by SiFive (timers continue).
9 stopcount WARL 0x1 will stop counters in debug mode. Not
used by SiFive (counters continue).
10 stepie WARL Enable interrupts when stepping. Not used
by SiFive (interrupts disabled).
11 ebreaku RwW EBREAK instructions in U-mode enter debug
mode (vs. breakpoint exception).
12 ebreaks RwW EBREAK instructions in S-mode enter debug
mode.
13 ebreakm RwW EBREAK instructions in M-mode enter debug
mode.
[27:14] Reserved
[31:28] xdebugver RO Version

Table 116: Debug Control and Status Register

13.2.2 Debug PC (dpc)

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-
tion resumes at this PC.

13.2.3 Debug Scratch (dscratch)

This register is generally reserved for use by Debug ROM in order to save registers needed by
the code in Debug ROM. The debugger may use it as described in The RISC-V Debug Specifi-
cation, Version 0.13.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

172

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

13.2.4 Trace and Debug Select Register (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed
through one level of indirection where the tselect register selects which bank of three
tdatal-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:

Trace and Debug Select Register (tselect)
CSR OX7A0
Bits Field Name Attr. Description
[31:0] index WARL | Selection index of trace and debug registers

Table 117: Trace and Debug Select Register

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if
index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdatal
must be inspected to determine whether the TDR exists.

13.2.5 Trace and Debug Data Registers (tdata1-3)

The tdatal-3 registers are 32-bit read/write registers selected from a larger underlying bank of
TDR registers by the tselect register.

Trace and Debug Data Register 1 (tdata1)
CSR Ox7A1
Bits Field Name | Attr. | Description
[27:0] TDR-Specific Data
[31:28] type RO The type of trace and debug register
selected by tselect

Table 118: Trace and Debug Data Register 1

Trace and Debug Data Registers 2 and 3 (tdata2/3)
CSR OX7A2 - OX7A3
Bits Field Name | Attr. | Description
[31:0] TDR-Specific Data

Table 119: Trace and Debug Data Registers 2 and 3

The high nibble of tdatal contains a 4-bit type code that is used to identify the type of TDR
selected by tselect. The currently defined types are shown below:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 173

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

Value | Description

0x0 No such TDR register

0x1 Reserved

0x2 Address/Data Match Trigger
>0x3 | Reserved

Table 120: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of
the registers, where only debug mode code can access the debug mode view of the TDRs. Any
attempt to read/write the tdatal- 3 registers in machine mode when dmode=1 raises an illegal
instruction exception.

13.3 Breakpoints

The E76-MC Core Complex supports four hardware breakpoint registers per hart, which can be
flexibly shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-
mation for the selected breakpoint:

CSR Name | Breakpoint Alias | Description

tselect tselect Breakpoint selection index
tdatal mcontrol Breakpoint match control
tdata2 maddress Breakpoint match address
tdata3 N/A Reserved

Table 121: TDR CSRs When Used as Breakpoints

13.3.1 Breakpoint Match Control Register (ncontrol)

Each breakpoint control register is a read/write register laid out in Table 122.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 174

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

Breakpoint Match Control Register (mcontrol)
CSR Ox7A1
Bits Field Name Attr. Rst. Description
0 R WARL X Address match on LOAD
1 W WARL X Address match on STORE
2 X WARL X Address match on Instruction FETCH
3 u WARL X Address match on user mode
4 S WARL X Address match on supervisor mode
5 Reserved WPRI X Reserved
6 M WARL X Address match on machine mode
[10:7] match WARL X Breakpoint Address Match type
11 chain WARL 0x0 Chain adjacent conditions.

[15:12] action WARL 0x0 Breakpoint action to take.

[17:16] sizelo WARL 0x0 Size of the breakpoint. Always O.
18 timing WARL 0x0 Timing of the breakpoint. Always O.
19 select WARL 0x0 Perform match on address or data.

Always 0.
20 Reserved WPRI X Reserved

[26:21] maskmax RO 0x4 Largest supported NAPOT range
27 dmode RW 0x0 Debug-Only access mode

[31:28] type RO 0x2 Address/Data match type, always 0x2

Table 122: Breakpoint Match Control Register

The type field is a 4-bit read-only field holding the value 0x2 to indicate this is a breakpoint con-
taining address match logic.

The action field is a 4-bit read-write WARL field that specifies the available actions when the
address match is successful. The value 0 generates a breakpoint exception. The value 1 enters
debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be
successful for loads, stores, and instruction fetches, respectively. All combinations of imple-
mented bits must be supported.

The M/s/u bits are individual WARL fields, and if set, indicate that an address match should only
be successful in the machine, supervisor, and user modes, respectively. All combinations of
implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for
breakpoint address matching. Three different match settings are currently supported: exact,
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches
and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.
Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered
breakpoint register giving the byte address at the bottom of the range and the higher-numbered

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 175

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

breakpoint register giving the address 1 byte above the breakpoint range, and using the chain
bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to
encode the size of the range as follows:

maddress Match type and size
a..aaaaaa Exact 1 byte

a..aaaaao0 2-byte NAPOT range
a..aaaadl 4-byte NAPOT range
a..aaadll 8-byte NAPOT range
a..aafl111l 16-byte NAPOT range
a..a01111 32-byte NAPOT range
a61.1111 23L_byte NAPOT range

Table 123: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.
The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.
A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is
encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding
the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with
the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater
than or equal). The second breakpoint can be set to match on address using action of 3 (less
than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing
unless they both match.

13.3.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is a 32-bit read/write register used to hold significant
address bits for address matching and also the unary-encoded address masking information for
NAPOT ranges.

13.3.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-
ware will generate a breakpoint trap when either half of the emulated access falls within the
address range. Implementations that support misaligned accesses in hardware must trap if any
byte of an access falls within the matching range.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 176

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-
isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint” set in the mcause
register and with badaddr holding the instruction or data address that caused the trap.

13.3.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,
the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,
either because a user explicitly requested one or because the user is debugging code in ROM.

13.4 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system
interconnect. The debug module is only accessible to debug code running in debug mode on a
hart (or via a debug transport module). The following addresses are offsets from the base
address of the Debug Module. Note that the PMP must allow M-mode access to the debug
module address range for debugging to be possible.

13.4.1 Debug RAM and Program Buffer (0x300—-0x3FF)

The E76-MC Core Complex has 16 32-bit words of program buffer for the debugger to direct a
hart to execute arbitrary RISC-V code. Its location in memory can be determined by executing
aiupc instructions and storing the result into the program buffer.

The E76-MC Core Complex has one 32-bit words of debug data RAM. Its location can be deter-
mined by reading the DMHARTINFO register as described in the RISC-V Debug Specification.
This RAM space is used to pass data for the Access Register abstract command described in
the RISC-V Debug Specification. The E76-MC Core Complex supports only general-purpose
register access when harts are halted. All other commands must be implemented by executing
from the debug program buffer.

In the E76-MC Core Complex, both the program buffer and debug data RAM are general-pur-
pose RAM and are mapped contiguously in the Core Complex memory space. Therefore, addi-
tional data can be passed in the program buffer, and additional instructions can be stored in the
debug data RAM.

Debuggers must not execute program buffer programs that access any debug module memory
except defined program buffer and debug data addresses.

The E76-MC Core Complex does not implement the DMSTATUS . anyhavereset or
DMSTATUS.allhavereset bits.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 177

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

13.4.2 Debug ROM (0x800-0XFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary
between implementations.

13.4.3 Debug Flags (0x100-0x110, 0x400—-0x7FF)

The flag registers in the debug module are used for the debug module to communicate with
each hart. These flags are set and read used by the debug ROM and should not be accessed
by any program buffer code. The specific behavior of the flags is not further documented here.

13.4.4 Safe Address

In the E76-MC Core Complex, the debug module contains the debug module address range in
the memory map. Memory accesses to these addresses raise access exceptions, unless the
hart is in debug mode. This property allows a "safe" location for unprogrammed parts, as the
default mtvec location is 0x0.

13.5 Debug Module Interface

The SiFive Debug Module (DM) conforms to The RISC-V Debug Specification, Version 0.13. A
debug probe or agent connects to the Debug Module through the Debug Module Interface
(DMI). The following sections describe notable spec options used in the implementation and
should be read in conjunction with the RISC-V Debug Specification.

DMl is a simple read/write bus whose master is the DTM (if it exists, otherwise DMI passes
through to customer logic) and whose slave is the Debug Module. The master sends a request
to the slave and the slave responds with a response. A request is considered sent if
reg_ready=1 indicating the master is sending a request and req_valid=1 indicating the slave
is accepting the request on this cycle. Similarly, the response is sent when both resp_valid=1
indicating the slave is sending a response and resp_ready=1 indicating the master is accepting
it.

Note

It is the responsibility of the debugger to simulate virtual address accesses by accessing
the page tables directly, then sending the translated physical address to hardware when
doing the access.

Note

The Debug Module registers are not directly accessible from the core.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 178

SiFive E76-MC Core Complex Manual

21G1.01.00

Debug
Group Signal Source | Description
clock system | All signals timed to this clock. With JTAG DTM, this
clock is the JTAG TCK.
System -
reset system | Synchronous reset. Generated by power-on reset cir-
cuit.

reg_ready | slave Slave ready to receive request.

req_valid | master | Master’s request valid.

reg_addr master | Configurable width address bus. 0x7 for SiFive.

req_data master | 32-bit write data bus.

Request —
BUS req_op master ¢ 0Ox0 = None

e 0x1 =Read
e 0x2 = Write
* 0x3 = Reserved

resp_ready | master | Master is ready to receive response.

resp_valid | slave Slave response is valid.

resp_data | slave 32-bit read data bus.

Response | resp_op slave ¢ 0x0 = Success
Bus

¢ 0Ox1 = Failure
¢ 0x2 = Not used

* 0x3 = Reserved

Table 124: Debug Module Interface Signals

13.5.1 Debug Module Status Register (dmstatus)

dmstatus holds the DM version number and other implementation information. Most importantly,
it contains status bits that indicate the current state of the selected hart(s).

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

179

SiFive E76-MC Core Complex Manual

21G1.01.00

Debug
Debug Module Status Register (dmstatus)
DMI Address 0x11

Bits Field Name Attr. Description
[3:0] version RO Implentation version number.

4 Reserved

5 hasresethaltreq RO 1if resethaltreq exists.
[7:6] Reserved

8 anyhalted RO Any currently selected hart is halted.

9 allhalted RO All currently selected harts are halted.

10 anyrunning RO Any currently selected hart is running.

11 allrunning RO All currently selected harts are running.

12 anyunavail RO Any currently selected hart is not available
(i.e. is powered down). DM supports it, but
not currently used by SiFive cores.

13 allunavail RO All currently selected harts are not available
(i.e. is powered down). DM supports it, but
not currently used by SiFive cores.

14 anynonexistent RO Any currently selected hart does not exist in
the system.

15 allnonexistent RO All currently selected harts do not exist in the
system.

16 anyresumeack RO Any currently selected hart has resumed
execution.

17 allresumeack RO All currently selected harts have resumed
execution.

18 anyhavereset RO Any currently selected hart has been reset,
but reset has not been acknowledged.

19 allhavereset RO All currently selected harts have been reset,
but reset has not been acknowledged.

[21:20] Reserved

22 impebreak RO 1 if PROGBUF is followed by implicit EBREAK.

Generally 1 for E2 cores, 0 otherwise.
[31:23] Reserved

Table 125: Debug Module Status Register

13.5.2 Debug Module Control Register (dmcontrol)

A debugger performs most hart controls through the dmcontrol register.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 180

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

Debug Module Control Register (dmcontrol)

DMI Address 0x10
Bits Field Name Attr. Description
0 dmactive RW 0 resets the DM, 1 puts the DM in opera-

tional mode. Drives dmactive output that

could be used by a system power controller
to maintain power to the DM while it is being
used. When 1, dmcontrol should be read

back until dmactive=1, which indicates that
the debug module is fully operational. When
0, the DM TileLink clock is gated off to save

power.
1 ndmreset RW Write 1 to reset system (assert ndreset out-
put). Write O to operate normally.
2 clrresethaltreq RW Clear reset-halt-request bit.
3 setresethaltreq RW When written to 1, the core will halt upon the
next deassertion of its reset.
[15:4] Reserved
[25:16] hartsel RW Selects the hart to operate on.
26 hasel RwW Not supported.
27 Reserved
28 ackhavereset RW Write 1 to acknowledge that a reset occurred
on the selected hart.
29 Reserved
30 resumereq RW Write 1 to request selected hart to resume,
cleared to 0 automatically when hart
resumes.
31 haltreq RW Write 1 to request selected hart to halt. Gen-

erates debug interrupt to the core. Write 0
once halted has been set by the DM.

Table 126: Debug Module Control Register

13.5.3 Hart Info Register (hartinfo)

hartinfo contains information about the currently selected hart.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 181

SiFive E76-MC Core Complex Manual

21G1.01.00

Debug
Hart Info Register (hartinfo)
DMI Address 0x12
Bits Field Name Attr. Description

[11:0] dataaddr RO Address of DATA registers in hart memory
map. 0x380 for SiFive.

[15:12] datasize RO Number of DATA registers. 1 for 32-bit, 0x2
for 64-bit SiFive cores.

16 dataaccess RO DATA registers are shadowed in the hart

memory map. 1 for SiFive.

[19:17] Reserved

[23:20] nscratch RO Number of dscratch registers available for
debugger. 1 for SiFive.

[31:24] Reserved

Table 127: Hart Info Register

13.5.4 Hart Array Window Register (hawindow)

This register contains a bitmap where bit O corresponds to hart 0, bit 1 to hart 1, etc. Any bits set
in this register select the corresponding hart in addition to the hart selected by hartsel.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved.

182

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

13.5.5 Abstract Control and Status Register (abstractcs)

Abstract Control and Status Register (abstractcs)
DMI Address 0x16
Bits Field Name Attr. Description
[3:0] datacount RW Number of DATA registers. 0x1 for 32-bit,
0x2 for 64-bit SiFive cores.

[7:4] Reserved
[10:8] cmderr RW Non-zero value indicates an abstract com-
mand error. Remains set until cleared by
writing all ones. If set, no abstract commands
are accepted.

¢ 0xO0 - No error

e 0x1 - Busy. Abstract command or regis-
ter was accessed while command was
running.

e 0x2 - Not supported. Abstract command
type not supported by hardware was
attempted.

» 0x3 - Exception. An exception occurred
during execution of an abstract com-
mand.

¢ 0x4 - Halt/resume. Abstract command
attempted while hart was running or
unavailable.

e 0x5 - Bus. Bus error occurred during
abstract command. Not used by SiFive.

e 0x7 - Other. Abstract command failed
for another reason. Not used by SiFive.

11 Reserved
12 busy RW Reads as 1 while Abstract command is run-
ning, O if not.

[23:13] Reserved
[28:24] progbufsize RW Number of 32-bit words in PROGBUF. Typically
16 for SiFive (some configs have less).

[31:29] Reserved
Table 128: Abstract Control and Status Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 183

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

13.5.6 Abstract Command Register (command)

Abstract Command Register (command)
DMI Address 0x17
Bits Field Name Attr. Description
[15:0] regno RW Select which register to read/write. SiFive
only supports GPRs: 6x1000-0x101F.
16 write RW 1=write register, O=read register. Only done if
transfer=1.
17 transfer RW 1=do the register read/write, 0=don't.
18 postexec RW 1l=execute PROGBUF after the command,
O=don't.
19 aarpostincrement RW Not supported by SiFive.
[22:20] aarsize RW 0x2, 0x3, 0x4 select 32, 64, 128 bits, respec-
tively.
23 Reserved
[31:24] cmdtype RW 0O=Access Register is the only type supported
by SiFive.

Table 129: Abstract Command Register

13.5.7 Abstract Command Autoexec Register (abstractauto)

Abstract Command Autoexec Register (abstractauto)

DMI Address 0x18
Bits Field Name Attr. Description
[11:0] autoexecdata RW Bitmap of DATA registers [11:0]. 1 indicates
DATA access initiates command.
[15:12] Reserved
[31:16] autoexecprogbuf RW Bitmap of PROGBUF words [15:0]. 1 indicates

PROGBUF access initiates command.

Table 130: Abstract Command Autoexec Register

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 184

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

13.5.8 Debug Module Control and Status 2 Register (dmcs2)

Debug Module Control and Status 2 Register (dmcs2)

DMI Address 0x32
Bits Field Name Attr. Description

0 hgselect RW O=operate on harts, 1=operate on external
triggers.

1 hgwrite RW When written with 1, the selected harts or
external trigger is assigned to halt group
haltgroup.

[6:2] group RW Specify the halt group or resume group num-

ber that the selected harts or external trig-
gers will be assigned to.

[10:7] exttrigger RW Select which external trigger to act upon if
hgwrite and hgselect are written to 1 in the
same write.

11 groupType RW O=operate on Halt Group configuration,

1=operate on Resume Group configuration.

[31:11] Reserved
Table 131: Debug Module Control and Status 2 Register

13.5.9 Abstract Commands

Abstract commands provide a debugger with a path to read and write processor state and are
used for extracting and modifying processor state such as registers and memory. Register s0 is
saved by the ROM and is available for use by the abstract command code. An abstract com-
mand is started by the debugger writing to command. In command, the debugger selects whether
to load/store a register, execute PROGBUF, or both. Only GPR register transfers are supported
currently. Many aspects of Abstract Commands are optional in the RISC-V Debug Spec and are
implemented as described below.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 185

SiFive E76-MC Core Complex Manual 21G1.01.00

Debug
cmdtype Feature Support
Access Register GPR reqisters Access Register command, register number
0Xx1000 - Ox101F
CSR registers Not supported. CSRs are accessed using the
Program Buffer.
FPU registers Not supported. FPU registers are accessed
using the Program Bulffer.
Autoexec Both autoexecprogbuf and autoexecdata
are supported.
Post-increment Not supported.
Core Register Not supported.
Access
Quick Access Not supported.
Access Memory Not supported. Memory access is accom-
plished using the Program Buffer.

Table 132: Debug Abstract Commands

The use of abstract commands is outlined in the following example, describing how to read a
word of target memory:

1.
2.
3.

10.

The debugger writes opcodes to PROGBUF to accomplish the desired function.
The debugger writes the desired memory address to DATA[O].

The debugger requests an abstract command specifying to load s from DATA[@], then
execute PROGBUF. Writing to command while hart n is selected has the side effect of setting
FLAGS[n].go. Writing to command also sets busy which is readable from the debugger, and
indicates that an abstract command is in progress.

The ROM busy-wait loop being executed by hart n sees FLAGS[n] . go set.
ROM code writes 0 to GOING which has the effect of clearing FLAGS[n] . go.

ROM code jumps to WHERETO, then ABSTRACT which contains the opcode 1w s, 0(DATA) to
load s0 from DATA[@]. Opcodes in ABSTRACT are constructed by DM hardware from com-
mand. If command.transfer=0, no register transfer is done and instead ABSTRACT[0] reads
as NOP.

If a register read/write is all that is needed, the debugger would set command.postexec to 0.
ABSTRACT[1] would then read as EBREAK.

If command.postexec=1, ABSTRACT[1] reads as NOP and execution falls through to
PROGBUF which will have been previously written by the debugger with the opcodes 1w s0,
0(s0), then sw s0, DATA(zero), then EBREAK.

EBREAK reenters ROM at address 0x800. ROM writes hartid to HALTED which has the side
effect of clearing busy, telling the debugger that the abstract command is finished.

The debugger reads the result from DATA[0Q].

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 186

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

The autoexec feature of Abstract Commands is supported by SiFive hardware (and is used by
OpenOCD for memory block read and write). Once an abstract command has been completed,
the debugger can read or write a particular DATA or PROGBUF location to run the command again.
For example, fast download can be accomplished by setting up PROGBUF for memory write,
then repeatedly writing words to DATA[0]. Each write re-executes the register transfer and
PROGBUF to store the word into memory. For a 32-bit block write, the abstract command would
be set up like this:

ABSTRACT | regno=s1, write=1, transfer=1, postexec=1. DM constructs the instructions
lw s1,0(DATA) // load sl from debugger
NOP // fall thru to PROGBUF
PROGBUF
sw sl, 0(s0) // store sl to memory
addi s0, s0, 4 // increment memory pointer
ebreak // done

Table 133: Abstract Command Example for 32-bit Block Write

13.5.10 Multi-core Synchronization

The DM is configured with one Halt Group that may be programmed to synchronize execution
between harts, or between hart(s) and external logic, such as a cross-trigger matrix. The Halt
Group is configured using the dmcs2 register.

Hart Array

The Hart Array is an internal bitmap that selects a subset of the harts in a system. Debug opera-
tions such as resume and halt are automatically applied to all the selected harts simultaneously.

To configure the Hart Array:

1. Setthe hasel bit in the Debug Module dmcontrol register.
2. Set bits in the hawindow register corresponding to the harts to be selected. Bit 0 = hart O,
Bit 1 = hart 1, etc.

The Hart Array covers debug operations initiated by the debugger, but does not cover the case
when harts halt due to other causes, such as breakpoints. This is handled with a Halt Group.

13.5.11 System Bus Access

System Bus Access (SBA) provides an alternative method to access memory. SBA operation

conforms to the RISC-V Debug Spec and the description is not duplicated here. It implements a
bus master that connects with the bus crossbar to allow access to the device’s physical address
space without involving a hart to perform accesses. SBA is controlled from the DMI using regis-

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 187

SiFive E76-MC Core Complex Manual 21G1.01.00
Debug

ters in the range 0x37 - 0x3F. By default, the maximum bus width supported by SBA is 32. Com-
paring Program Buffer memory access and SBA:

Program Buffer Memory Access SBA Memory Access
Physical Address Physical Address

Subject to Physical Memory Protection (PMP) | Not subject to PMP

Cache coherent Cache coherent

Hart must be halted Hart may be halted or running

Table 134: System Bus vs. Program Buffer Comparison

13.6 Debug Module Operational Sequences

The sections belows describe the flow for entering into and exiting from debug mode. The user
can halt and resume more than one hart at a time using the hart array mask.

13.6.1 Entering Debug Mode
To use debug mode, the DM must be enabled by writing 6x0000_0001 to dmcontrol.

The debugger can request a halt by writing ©x8000_0001 to dmcontrol to set haltreq. This
generates a debug interrupt to the core.

The core enters debug mode and jumps to the debug interrupt handler located at 6x806 and
serviced from the DM.

ROM code at 0x800 writes hartid into the HALTED register which has the effect of setting the
halted bit for this hart. Halted bits are readable from the debugger and generally will be continu-
ally polled to check for breakpoints when a hart is running.

ROM code then busy-waits checking its hart-specific FLAGS register.

13.6.2 Exiting Debug Mode

The debugger writes 1 to resumereq in the dmcontrol register to restart execution. This clears
resumeack and sets bit 1 of the FLAGS register for the selected hart.

The ROM busy-wait loop being executed by hart n sees FLAGS[n] .resume set.

ROM code writes hartid to RESUMING, which has the effect of clearing FLAGS[n].resume,
setting resumeack, and clearing halted for the hart.

ROM code then executes dret which returns to user code at the address currently in dpc.

The debugger sees resumeack and knows the resume was successful.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 188

SiFive E76-MC Core Complex Manual 21G1.01.00

Appendix A

SiFive Core Complex Configuration
Options

This section lists the key configuration options of the SiFive E7 Series Core Complex. The con-
figuration for the E76-MC Core Complex is listed in docs/core_complex_configuration. txt.

A.1 E7 Series

The E7 Series comes with the following set of configuration options. Note that the configuration
may be limited to a fixed set of discrete options.

Modes and ISA
» Configurable number of Cores (1 to 8). In the case where more than one core is
selected, all cores are configured the same.

» Optional support for RISC-V user mode
e Optional M, F, D, B, and Zfh extensions

o |f M extension, configurable performance (1-cycle or 4-cycle)
» Configurable base ISA (RV32l or RV32E)

» Optional SiFive Custom Instruction Extension (SCIE)

On-Chip Memory
« Instruction Cache with optional minimal settings (256 B, 2-way), or configurable size (4
KiB to 64 KiB) and associativity (2-, 4-, or 8-way)

» Optional Instruction-Tightly Integrated Memory (ITIM) with configurable size (4 KiB to
256 KiB) and base address

» Data Tightly-Integrated Memory (DTIM) or Data Cache:

o |f DTIM, then configurable size (4 KiB to 256 KiB) and base address

o |f Data Cache, then configurable size (4 KiB to 256 KiB) and associativity (2-, 4-,
8-, or 16-way)

» Optional Data Local Store (DLS) with the following options:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 189

SiFive E76-MC Core Complex Manual 21G1.01.00
SiFive Core Complex Configuration Options

o Configurable size (4 KiB to 8 MiB)
o Configurable base address
o Configurable pipeline depth (0, 1, or 3 additional stages)
o Configurable number of banks (1 to 64)
» Optional L2 Cache with the following options:
o Configurable size (128 KiB to 4 MiB), associativity (2-, 4-, 8-, 16-, or 32-way), and
banks (1, 2, or 4)

o Configurable number of L2 Hardware Prefetcher streams (4, 8, or 16) and queue
size (4, 8, 12, or 16)

o Configurable L1 to L2 bus width (64-, 128-, or 256-bit)
» Optional Fast I/O
Error Handling
» Optional Bus-Error Unit
» Optional ECC support

Ports
» Optional Memory Port, System Port, Peripheral Port, and Front Port

o Each port has a configurable base address, width (32-, 64-, or 128-bit), size (64
KiB to 2 GiB), and protocol (AHB, AHB-Lite, APB, AXl4)

o If AXI4 protocol, configurable AXI ID width (4, 8, or 16). Front, Memory, and Sys-
tem Ports only.

» Optional Core Local Port with configurable base address, width (32-, 64-, or 128-bit),
and size (64 KiB to max. supported address)

Security
« Optional Physical Memory Protection, configurable up to 16 regions

¢ Optional Disable Debug Input
« Optional Password-protected Debug

« Optional Hardware Cryptographic Accelerator (HCA) with the following options:

o Configurable base address

o Optional AES-128/192/256

o Qptional AES-MAC

o Optional SHA-224/256/384/512

o QOptional True Random Number Generator (TRNG)

o QOptional Public Key Accelerator (PKA) with the following parameters:

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 190

SiFive E76-MC Core Complex Manual 21G1.01.00
SiFive Core Complex Configuration Options

= Configurable PKA operation maximum width (256 or 384 bits)

Debug
» Optional Debug Module with the following options:
o Configurable base address
o Configurable debug interface (JTAG, cJTAG, or APB)

o Configurable number of Hardware Breakpoints (0 to 16) and External Triggers (0
to 16)

o Optional System Bus Access
» Configurable number of performance counters (0 to 8)
» Optional Raw Instruction Trace Port

» Optional Nexus Trace Encoder with the following options:

o Configurable Trace Encoder Format (BTM or HTM)
o Trace Sink (SRAM, ATB Bridge, SWT, System Memory, and/or PIB)

= |If SRAM Sink, configurable Trace Buffer size (256 B to 64 KiB)

= |f PIB Sink, configurable width (1-, 2-, 3-, 5-, or 9-bit) and optional PIB clock
input

o Optional Timestamp capabilities with configurable width (40, 48, or 56 bits) and
source (Bus Clock, Core Clock, or External)

o External Trigger Inputs (0 to 8) and Outputs (0 to 8)
o Optional Instrumentation Trace Component (ITC)
o Optional PC Sampling
Interrupts
» Optional Platform-Level Interrupt Controller (PLIC) with the following parameters:
o Priority Levels (1 to 7)
o Number of interrupts (1 to 511)
* A configurable number of Core-Local Interruptor (CLINT) interrupts (O to 16)
Design For Test
« Configurable SRAM user-defined inputs (0 to 1024)
« Configurable SRAM user-defined outputs (0 to 1024)

Clocks and Reset
» Optional Clock Gating

» Configurable Reset Scheme (Synchronous, Asynchronous, Full Asynchronous with
separate GPR reset)

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 191

SiFive E76-MC Core Complex Manual 21G1.01.00
SiFive Core Complex Configuration Options

Branch Prediction
» Configurable Branch Prediction (Area- or Performance-Optimized)

RTL Options
» Optional custom RTL module name prefix

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 192

SiFive E76-MC Core Complex Manual 21G1.01.00

Appendix B

SiFive RISC-V Implementation Registers

This section provides a reference to the SiFive RISC-V implementation version registers
marchid and mimpid.

B.1 Machine Architecture ID Register (marchid)

Value Core Generator
0x8000_0007 | 7-Series Processor (E7, S7, U7 series)

Table 135: Core Generator Encoding of marchid

B.2 Machine Implementation ID Register (mimpid)

Value Generator Release Version
0x0000_0000 | Pre-19.02
0x2019_ 0228 | 19.02
0x2019_0531 | 19.05
0x2019_0919 | 19.08p0p0 / 19.08.00
0x2019_1105 | 19.08p1p0/19.08.01.00
0x2019_ 1204 | 19.08p2p0/ 19.08.02.00
0x2020_0423 | 19.08p3p0/ 19.08.03.00
0x0120_0626 | 19.08p4p0 / 19.08.04.00
0x0220_0515 | koala.00.00-preview and koala.01.00-preview
0x0220_0603 | koala.02.00-preview
0x0220_0630 | 20G1.03.00 / koala.03.00-general
0x0220_0710 | 20G1.04.00 / koala.04.00-general
0x0220_0826 | 20G1.05.00 / koala.05.00-general
0x0320_0908 | kiwi.00.00-preview
0x0220_1013 | 20G1.06.00 / koala.06.00-general
0x0220_1120 | 20G1.07.00 / koala.07.00-general
0x0421_0205 | llama.00.00-preview
0x0421_0324 | 21G1.01.00 / llama.01.00-general

Table 136: Generator Release Encoding of mimpid

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 193

SiFive E76-MC Core Complex Manual 21G1.01.00

Appendix C

Floating-Point Unit Instruction Timing

This section provides a reference for the instruction timings of the single-precision floating-point
unit in the E76-MC Core Complex.

C.1 E7 Floating-Point Instruction Timing

Single-precision floating-point unit instruction latency and repeat rates are described in Table
137.

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 194

SiFive E76-MC Core Complex Manual
Floating-Point Unit Instruction Timing

21G1.01.00

. Repeat
Assembly Operation Latency Rgte
Sign Inject
fabs.s rd, rsi flrd] = |f[rs1]]| 2 1
fsgnj.s rd, rsi, rs2 flrd] = {f[rs2][31], f[rs1][30:0]} 2 1
fsgnjn.s rd, rsi, rs2 flrd] = {~f[rs2][31], f[rs1][30:0]} 2 1
fsgnjx.s rd, rsi, rs2 flrd] = {f[rs1][31] A f[rs2][31], 2 1
flrs1][30:0]}
Arithmetic
fadd.s rd, rsi, rs2 flrd] = f[rs1] + f[rs2] 5 1
fsub.srd, rsi, rs2 flrd] = f[rs1] - f[rs2] 5 1
fdiv.s rd, rsi, rs2 flrd] = f[rsi] = f[rs2] 9-36 8-33
fmul.s rd, rsi, rs2 flrd] = f[rs1] x f[rs2] 5 1
fsqrt.s rd, rsi flrd] = vf[rsi] 9-28 8-33
fmadd.s rd, rsi, rs2, rs3 f[rd] = (f[rs1] x f[rs2]) + f[rs3] 5 1
fmsub.s rd, rsi, rs2, rs3 flrd] = (f[rs1] x f[rs2]) - f[rs3] 5 1
Negate Arithmetic
fneg.s rd, rsi flrd] = —f[rs1] 2 1
fnmadd.s rd, rsi, rs2, rs3 | f[rd] = —=(f[rs1] x f[rs2]) - f[rs3] 5 1
fnmsub.s rd, rsi, rs2, rs3 | f[rd] = —(f[rs1] x f[rs2]) + f[rs3] 5 1
Compare
feq.s rd, rsi, rs2 x[rd] = f[rs1] == f[rs2] 4 1
fle.s rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
flt.s rd, rsi, rs2 x[rd] = f[rs1] < f[rs2] 4 1
fmax.s rd, rsi, rs2 flrd] = max(f[rs1], f[rs2]) 2 1
fmin.s rd, rsi, rs2 flrd] = min(f[rs1], f[rs2]) 2 1
Categorize
fclass.s rd, rsi | x[rd] = classifys(f[rsi]) 4 | 1
Convert Data Type
fcvt.w.s rd, rsi x[rd] = sext(s32f32(f[rsi]) 4 1
fevt.l.s rd, rsi x[rd] = s64f32(f[rsi]) N/A N/A
fcvt.s.w rd, rsi flrd] = f32s32(x[rs1]) 2 1
fcvt.s.l rd, rsi flrd] = f32s4(x[rsi]) N/A N/A
fcvt.wu.s rd, rsi x[rd] = sext(u32fz2(f[rsi]) 4 1
fcvt.lu.s rd, rsi x[rd] = ub4fzza(f[rsi]) N/A N/A
fcvt.s.wu rd, rsi flrd] = f32y32(x[rs1]) 2 1
fcvt.s.lu rd, rsi flrd] = f32us4(x[rsi]) N/A N/A
Move
fmv.s rd, rsi flrd] = f[rs1] 2 1
fmv.w.x rd, rsi flrd] = x[rs1][31:0] 1 1
fmv.x.w rd, rsi x[rd] = sext(f[rs1][31:0]) 1 1
Load/Store
flw rd, offset(rsi) f[rd] = M[x[rs1] + sext(offset)][31:0] 1 1
fsw rs2, offset(rsi) M[x[rs1] + sext(offset)] = f[rs2][31:0] 1 1
Table 137: E7 Single-Precision FPU Instruction Latency and Repeat Rates
Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 195

SiFive E76-MC Core Complex Manual 21G1.01.00

References

Visit the SiFive forums for support and answers to frequently asked questions:
https://forums.sifive.com

[1] A. Waterman and K. Asanovic, Eds., The RISC-V Instruction Set Manual, Volume I: User-
Level ISA, Version 2.2, June 2019. [Online]. Available: https://riscv.org/specifications/

[2] ——, The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version 1.11,
June 2019. [Online]. Available: https://riscv.org/specifications/privileged-isa

[3] —, SiFive TileLink Specification Version 1.8.0, August 2019. [Online]. Available:
https://sifive.com/documentation/tilelink/tilelink-spec

[4] A. Chang, D. Barbier, and P. Dabbelt, RISC-V Platform-Level Interrupt Controller (PLIC)
Specification. [Online]. Available: https://github.com/riscv/riscv-plic-spec

Copyright © 2019-2021 by SiFive, Inc. All rights reserved. 196

https://forums.sifive.com/
https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa
https://sifive.com/documentation/tilelink/tilelink-spec
https://github.com/riscv/riscv-plic-spec

	SiFive E76-MC Core Complex Manual
	SiFive E76-MC Core Complex Manual
	Proprietary Notice

	Chapter 1 Introduction
	1.1 About this Document
	1.2 About this Release
	1.3 E76-MC Core Complex Overview
	1.4 E7 RISC‑V Cores
	1.5 Memory System
	1.6 Interrupts
	1.7 Debug Support
	1.8 Compliance

	Chapter 2 List of Abbreviations and Terms
	Chapter 3 E7 RISC‑V Core
	3.1 Supported Modes
	3.2 Instruction Memory System
	3.2.1 Execution Memory Space
	3.2.2 L1 Instruction Cache
	3.2.3 Cache Maintenance
	3.2.4 Coherence with an L2 Cache
	3.2.5 Instruction Tightly-Integrated Memory (ITIM)
	3.2.6 Instruction Fetch Unit
	3.2.7 Branch Prediction

	3.3 Execution Pipeline
	3.4 Data Memory System
	3.4.1 L1 Data Cache
	3.4.2 Cache Maintenance Operations
	3.4.3 L1 Data Cache Coherency
	3.4.4 Coherence with an L2 Cache
	3.4.5 Data Local Store (DLS)

	3.5 Fast I/O
	3.6 Atomic Memory Operations
	3.7 Floating-Point Unit (FPU)
	3.8 Physical Memory Protection (PMP)
	3.8.1 PMP Functional Description
	3.8.2 PMP Region Locking
	3.8.3 PMP Registers
	PMP Configuration Registers
	PMP Address Registers

	3.8.4 PMP and PMA
	3.8.5 PMP Programming Overview
	PMP Programming Example
	PMP Access Scenarios

	3.8.6 PMP and Paging
	3.8.7 PMP Limitations
	3.8.8 Behavior for Regions without PMP Protection
	3.8.9 Cache Flush Behavior on PMP Protected Region

	3.9 Hardware Performance Monitor
	3.9.1 Performance Monitoring Counters Reset Behavior
	3.9.2 Fixed-Function Performance Monitoring Counters
	Fixed-Function Cycle Counter (mcycle)
	Fixed-Function Instructions-Retired Counter (minstret)

	3.9.3 Event-Programmable Performance Monitoring Counters
	3.9.4 Event Selector Registers
	3.9.5 Event Selector Encodings
	Combining Events

	3.9.6 Counter-Enable Registers

	3.10 L2 Performance Monitor
	3.10.1 Control Port Register Map
	3.10.2 L2PM Event Control
	L2 Counter Client Filter CSR (L2ClientFilter)
	L2 Performance Monitor Counters (L2pmcounter*)

	3.10.3 Event Selector Registers
	3.10.4 Event Selector Encodings
	3.10.5 Setting up the pmclientmask Register
	3.10.6 Programming the L2pmevent registers

	3.11 Ports
	3.11.1 Front Port
	3.11.2 Memory Port
	3.11.3 Peripheral Port
	3.11.4 System Port

	Chapter 4 Physical Memory Attributes and Memory Map
	4.1 Physical Memory Attributes Overview
	4.2 Memory Map

	Chapter 5 Programmer’s Model
	5.1 Base Instruction Formats
	5.2 I Extension: Standard Integer Instructions
	5.2.1 R-Type (Register-Based) Integer Instructions
	5.2.2 I-Type Integer Instructions
	5.2.3 I-Type Load Instructions
	5.2.4 S-Type Store Instructions
	5.2.5 Unconditional Jumps
	5.2.6 Conditional Branches
	5.2.7 Upper-Immediate Instructions
	5.2.8 Memory Ordering Operations
	5.2.9 Environment Call and Breakpoints
	5.2.10 NOP Instruction

	5.3 M Extension: Multiplication Operations
	5.3.1 Division Operations

	5.4 A Extension: Atomic Operations
	5.4.1 Atomic Load-Reserve and Store-Conditional Instructions
	5.4.2 Atomic Memory Operations (AMOs)

	5.5 F Extension: Single-Precision Floating-Point Instructions
	5.5.1 Floating-Point Control and Status Registers
	5.5.2 Rounding Modes
	5.5.3 Single-Precision Floating-Point Load and Store Instructions
	5.5.4 Single-Precision Floating-Point Computational Instructions
	5.5.5 Single-Precision Floating-Point Conversion and Move Instructions
	Single-Precision Floating-Point Conversion Instructions
	Single-Precision Floating-Point to Floating-Point Sign-Injection Instructions
	Single-Precision Floating-Point Move Instructions

	5.5.6 Single-Precision Floating-Point Compare Instructions
	Single-Precision Floating-Point Classify Instruction

	5.6 C Extension: Compressed Instructions
	5.6.1 Compressed 16-bit Instruction Formats
	5.6.2 Stack-Pointed-Based Loads and Stores
	5.6.3 Register-Based Loads and Stores
	5.6.4 Control Transfer Instructions
	5.6.5 Integer Computational Instructions
	Integer Constant-Generation Instructions
	Integer Register-Immediate Operations
	Integer Register-Register Operations
	Defined Illegal Instruction

	5.7 B Extension: Bit Manipulation Instructions
	5.7.1 Basic Bit Manipulation Instructions
	Count Leading/Trailing Zeroes Instructions
	Count Bits Set Instructions
	Logic-With-Negate Instructions
	Comparison Instructions
	Sign-Extend Instructions

	5.7.2 Bit Permutation Instructions
	5.7.3 Address Calculation Instructions
	5.7.4 Bit Manupulation Pseudoinstructions

	5.8 Zicsr Extension: Control and Status Register Instructions
	5.8.1 Control and Status Registers
	5.8.2 Defined CSRs
	5.8.3 CSR Access Ordering
	5.8.4 SiFive RISC‑V Implementation Version Registers
	mvendorid
	marchid
	mimpid
	Reading Implementation Version Registers

	5.8.5 Custom CSRs

	5.9 Base Counters and Timers
	5.9.1 Timer Register
	5.9.2 Timer API
	Functions

	5.10 Privileged Instructions
	5.10.1 Machine-Mode Privileged Instructions
	Environment Call and Breakpoint
	Trap-Return Instructions
	Wait for Interrupt

	5.11 ABI - Register File Usage and Calling Conventions
	5.11.1 RISC‑V Assembly
	5.11.2 Assembler to Machine Code
	5.11.3 Calling a Function (Calling Convention)
	Nested Functions
	Memory Layout

	5.12 Memory Ordering - FENCE Instructions
	5.13 Boot Flow
	5.14 Linker File
	5.14.1 Linker File Symbols
	Generated Linker Symbols

	5.15 RISC‑V Compiler Flags
	5.15.1 arch, abi, and mtune
	-march
	-mabi
	arch/abi Combinations

	5.16 Compilation Process
	5.17 Large Code Model Workarounds
	5.17.1 Workaround Example #1
	5.17.2 Workaround Example #2

	5.18 Pipeline Hazards
	5.18.1 Read-After-Write Hazards
	5.18.2 Write-After-Write Hazards

	5.19 Reading CSRs

	Chapter 6 Custom Instructions and CSRs
	6.1 CFLUSH.D.L1
	6.2 CDISCARD.D.L1
	6.3 CEASE
	6.4 PAUSE
	6.5 Branch Prediction Mode CSR
	6.5.1 Branch-Direction Prediction

	6.6 SiFive Feature Disable CSR
	6.7 Other Custom Instructions

	Chapter 7 Interrupts and Exceptions
	7.1 Interrupt Concepts
	7.2 Exception Concepts
	7.3 Trap Concepts
	7.4 Interrupt Block Diagram
	7.5 Local Interrupts
	7.6 Interrupt Operation
	7.6.1 Interrupt Entry and Exit

	7.7 Interrupt Control and Status Registers
	7.7.1 Machine Status Register (mstatus)
	7.7.2 Machine Trap Vector (mtvec)
	Mode Direct
	Mode Vectored

	7.7.3 Machine Interrupt Enable (mie)
	7.7.4 Machine Interrupt Pending (mip)
	7.7.5 Machine Cause (mcause)
	7.7.6 Minimum Interrupt Configuration

	7.8 Interrupt Priorities
	7.9 Interrupt Latency
	7.10 Non-Maskable Interrupt
	7.10.1 Handler Addresses
	7.10.2 RNMI CSRs
	7.10.3 MNRET Instruction
	7.10.4 RNMI Operation

	Chapter 8 Core-Local Interruptor (CLINT)
	8.1 CLINT Priorities and Preemption
	8.2 CLINT Vector Table
	8.3 CLINT Interrupt Sources
	8.4 CLINT Interrupt Attribute
	8.5 CLINT Memory Map
	8.6 Register Descriptions
	8.6.1 MSIP Register
	8.6.2 Timer Registers

	Chapter 9 Platform-Level Interrupt Controller (PLIC)
	9.1 Memory Map
	9.2 Interrupt Sources
	9.3 Interrupt Priorities
	9.4 Interrupt Pending Bits
	9.5 Interrupt Enables
	9.6 Priority Thresholds
	9.7 Interrupt Claim Process
	9.8 Interrupt Completion
	9.9 Example PLIC Interrupt Handler

	Chapter 10 TileLink Error Device
	Chapter 11 Level 2 Cache Controller
	11.1 Level 2 Cache Controller Overview
	11.2 Functional Description
	11.2.1 Way Enable and the L2 Loosely-Integrated Memory (L2 LIM)
	11.2.2 Way Masking and Locking
	11.2.3 L2 Zero Device
	11.2.4 L2 Features Access Summary
	11.2.5 L2 Prefetcher
	Operation
	Retiring streams
	4 KiB Page Boundaries

	11.2.6 Coherence

	11.3 Memory Map
	11.4 Register Descriptions
	11.4.1 Cache Configuration Register (Config)
	11.4.2 Way Enable Register (WayEnable)
	11.4.3 Cache Flush Register (Flush32)
	11.4.4 Way Mask Registers (WayMask*)
	11.4.5 L2 Prefetch Control Registers

	11.5 Procedure to Flush the L2 Cache

	Chapter 12 Power Management
	12.1 Power Modes
	12.2 Run Mode
	12.3 WFI Clock Gate Mode
	12.3.1 WFI Wake Up

	12.4 CEASE Instruction for Power Down
	12.5 Hardware Reset
	12.6 Early Boot Flow
	12.7 Interrupt State During Early Boot
	12.8 Other Boot Time Considerations
	12.9 Power-Down Flow

	Chapter 13 Debug
	13.1 Debug Module
	13.2 Trace and Debug Registers
	13.2.1 Debug Control and Status Register (dcsr)
	13.2.2 Debug PC (dpc)
	13.2.3 Debug Scratch (dscratch)
	13.2.4 Trace and Debug Select Register (tselect)
	13.2.5 Trace and Debug Data Registers (tdata1-3)

	13.3 Breakpoints
	13.3.1 Breakpoint Match Control Register (mcontrol)
	13.3.2 Breakpoint Match Address Register (maddress)
	13.3.3 Breakpoint Execution
	13.3.4 Sharing Breakpoints Between Debug and Machine Mode

	13.4 Debug Memory Map
	13.4.1 Debug RAM and Program Buffer (0x300–0x3FF)
	13.4.2 Debug ROM (0x800–0xFFF)
	13.4.3 Debug Flags (0x100–0x110, 0x400–0x7FF)
	13.4.4 Safe Address

	13.5 Debug Module Interface
	13.5.1 Debug Module Status Register (dmstatus)
	13.5.2 Debug Module Control Register (dmcontrol)
	13.5.3 Hart Info Register (hartinfo)
	13.5.4 Hart Array Window Register (hawindow)
	13.5.5 Abstract Control and Status Register (abstractcs)
	13.5.6 Abstract Command Register (command)
	13.5.7 Abstract Command Autoexec Register (abstractauto)
	13.5.8 Debug Module Control and Status 2 Register (dmcs2)
	13.5.9 Abstract Commands
	13.5.10 Multi-core Synchronization
	Hart Array

	13.5.11 System Bus Access

	13.6 Debug Module Operational Sequences
	13.6.1 Entering Debug Mode
	13.6.2 Exiting Debug Mode

	Appendix A SiFive Core Complex Configuration Options
	A.1 E7 Series

	Appendix B SiFive RISC‑V Implementation Registers
	B.1 Machine Architecture ID Register (marchid)
	B.2 Machine Implementation ID Register (mimpid)

	Appendix C Floating-Point Unit Instruction Timing
	C.1 E7 Floating-Point Instruction Timing

	References

