
Freedom Metal Boot Code

Version 1.1

© SiFive, Inc.



Freedom Metal Boot Code

Proprietary Notice

Copyright © 2019, SiFive Inc. All rights reserved.

Information in this document is provided as is, with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

V1.0 January 29, 2020 • Initial release

V1.1 February 4, 2020 • Minor clarifications



Contents

1 Freedom Metal Boot Code ................................................................................2

1.1 Introduction ................................................................................................................ 2

1.1.1 RISC-V User Registers .......................................................................................2

1.1.2 RISC-V Control & Status Registers (CSRs) ..........................................................3

2 Boot Flow Components......................................................................................5

2.1 Linker File .................................................................................................................. 5

2.1.1 Linker File Symbols ............................................................................................6

3 Boot Flow Details...................................................................................................8

4 Conclusion .............................................................................................................. 10

1



Chapter 1

Freedom Metal Boot Code

1.1 Introduction

All software examples in the SiFive freedom-e-sdk github repository utilize low-level startup

code which resides in the freedom-metal github repository. The freedom-metal repo is an API

submodule that is integrated within freedom-e-sdk, along with software examples, which are dis-

tributed as part of all custom core IP tarball deliveries. This document describes the low level

startup code contained in freedom-metal.

1.1.1 RISC-V User Registers

Prior to describing the details of the boot flow, it is worthwhile to understand the RISC-V user

registers, and their representation within the defined Application Binary Interface (ABI). The ABI

calling convention (link) describes how registers are used in functions and library calls within the

software application.

2

https://github.com/sifive/freedom-e-sdk
https://github.com/sifive/freedom-metal
https://riscv.org/wp-content/uploads/2015/01/riscv-calling.pdf


Figure 1: RISC-V Assembler mnemonics and ABI convention

A few notable descriptions include:

• Function arguments and return values start in x10

• x0 is always hardwired to 0x0

• The gp is initialized at startup and should always be preserved, as it may be used to calcu-

late jump offsets

Referencing each user register in assembly code can be accomplished by the register or ABI

name, as the assembler understands both.

The full RISC-V Assembly Manual can be found here.

1.1.2 RISC-V Control & Status Registers (CSRs)

The CSR registers are only accessible using variations of the csrr (Read) and csrw write

instructions. Only the CPU executing the csr instruction can read or write these registers, and

they are not visible by software outside of the core they reside on. A few examples of assembler

CSR instructions are shown below.

; Read mhartid CSR value into user register a0
csrr a0, mhartid

; load a0 with a predefined value of BITS_TO_SET
li a0, BITS_TO_SET;
; use CSR Set instruction to set these bits in mstatus
csrs mstatus, a0

3

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md


; Write immediate data to floating point control and status register
csrwi fcsr, 0

A C code representation showing how to clear all bits in medeleg regsiter is shown below.

// The Compiler will select the register to use for the `%0` field.
__asm__ volatile ("csrc medeleg, %0" :: "r"(-1));

For more information on CSR registers, refer to the The RISC-V Instruction Set Manual Volume

II: Privileged Architecture, available at riscv.org.

4



Chapter 2

Boot Flow Components

The freedom-metal boot code supports single core boot or multi-core boot, and contains all the

necessary initialization code to enable every core in the system. All SiFive core designs contain

a single hardware thread, or hart, which may be used interchangeably for core or cpu in this

document.

2.1 Linker File

The linker file generates important symbols that are used in the boot code. The linker file

options are found in the freedom-e-sdk/bsp path. There are usually three different linker file

options:

• metal.default.lds — Use flash and RAM sections

• metal.ramrodata.lds — Place read only data in RAM for better performance

• metal.scratchpad.lds — Places all code + data sections into available RAM location

Each linker option can be selected by selecting LINK_TARGET on the command line. For exam-

ple:

make PROGRAM=hello TARGET=design-rtl CONFIGURATION=release LINK_TARGET=scratchpad
software

The metal.default.lds linker file is selected by default when LINK_TARGET is not specified. If

there is a scenario where a custom linker is required, one of the supplied linker files can be

copied and renamed and used for the build. For example, if a new linker file named

metal.newmap.lds was generated, this can be used at build time by specifying

LINK_TARGET=newmap on the command line.

5



Note

The linker files describe heap sections but they may not be needed if the application does

not use library calls like malloc which require heap sections to be defined. There is no

requirement to initialize the heap section in the startup code.

2.1.1 Linker File Symbols

The linker file generates symbols that are used by the startup code, so that software can use

these symbols to assign the stack pointer, initialize or copy certain RAM sections, and provide

the boot hart information. These symbols are made visible to software using the PROVIDE key-

word. For example:

__stack_size = DEFINED(__stack_size) ? __stack_size : 0x400;
PROVIDE(__stack_size = __stack_size);

Generated Linker Symbols

A list and description of the generated linker symbols is shown below.

• __metal_boot_hart

◦ This is an integer number to describe which hart runs the main init flow. The mhartid

CSR contains the integer value for each hart. For example, hart 0 has mhartid==0, hart 1

has mhartid==1, and so on. An assembly example is shown below, where a0 already

contains the mhartid value.

/* If we're not hart 0, skip the initialization work */
la t0, __metal_boot_hart
bne a0, t0, _skip_init

An example on how to use this symbol in C code is shown below.

extern int __metal_boot_hart;
int boot_hart = (int)&__metal_boot_hart;

Additional linker file generated symbols, along with descriptions are shown below.

• __metal_chicken_bit

◦ Status bit to tell startup code to zero out the Feature Disable CSR. Details of this register

are internal use only.

• __global_pointer$

◦ Static value used to write the gp register at startup.

• _sp

6



◦ Address of the end of stack for hart 0, used to initialize the beginning of the stack since

the stack grows lower in memory. On a multi-hart system, the start address of the stack

for each hart is calculated using (_sp + __stack_size * mhartid)

• metal_segment_bss_target_start & metal_segment_bss_target_end

◦ Used to zero out global data mapped to .bss section.

▪ Only __metal_boot_hart runs this code.

• metal_segment_data_source_start, metal_segment_data_target_start,

metal_segment_data_target_end

◦ Used to copy data from image to its destination in RAM.

▪ Only __metal_boot_hart runs this code.

• metal_segment_itim_source_start, metal_segment_itim_target_start,

metal_segment_itim_target_end

◦ Code or data can be placed in itim sections using the __attribute__section(".itim")

▪ When this attribute is applied to code or data, the

metal_segment_itim_source_start, metal_segment_itim_target_start, and

metal_segment_itim_target_end symbols get updated accordingly, and these

symbols allow the startup code to copy code and data into the ITIM area.

▪ Only __metal_boot_hart runs this code.

Note

At the time of this writing, the boot flow does not support C++ projects

7



Chapter 3

Boot Flow Details

A high level overview of the boot flow is shown below, which is based on the 2019.08 tagged

release of Freedom Metal.

1. ENTRY POINT: File: freedom-metal/src/entry.S, label: _enter

2. Initialize global pointer gp register using the generated symbol __global_pointer$.

3. Write mtvec register with early_trap_vector as default exception handler

4. Clear chicken bits (usage for this register is not made public)

5. Read mhartid into register a0 and call _start, which exists in crt0.S

6. We now transition to File: freedom-metal/gloss/crt0.S, label _start

7. Initialize stack pointer, sp, with _sp generated symbol. Harts with mhartid of one or

larger are offset by (_sp + __stack_size * mhartid). The __stack_size field is

generated in the linker file.

8. Check if mhartid == __metal_boot_hart and run the init code if they are equal.

All other harts skip init and go to the Post Init Flow, step #15.

9. Boot Hart Init Flow Begins Here

10. Init data section to destination in defined RAM space

11. Copy ITIM section, if ITIM code exists, to destination

12. Zero out bss section

13. Call atexit library function which registers the libc and freedom-metal destructors

to run after main returns.

14. Call __libc_init_array library function, which runs all functions marked with

__attribute__((constructor)).

a. For example, PLL, UART, L2 if they exist in the design. This method

provides full early initialization prior to entering the main application.

8



15. Post Init Flow Begins Here

16. Call the C routine __metal_synchronize_harts, where hart 0 will release all harts

once their individual msip bits are set. The msip bit is typically used to assert a soft-

ware interrupt on individual harts, however interrupts are not yet enabled, so msip in

this case is used as a gatekeeping mechanism.

17. Check misa register to see if floating point hardware is part of the design, and set

up mstatus accordingly.

18. Single or multi-hart design redirection step

a. If design is a single hart only, or a multi-hart design without a C-imple-

mented function secondary_main, ONLY the boot hart will continue to

main().

b. For multi-hart designs, all other CPUs will enter sleep via WFI instruction

via the weak secondary_main label in crt0.S, while boot hart runs the

application program.

c. In a multi-hart design which includes a C-defined secondary_main func-

tion, all harts will enter secondary_main as the primary C function.

Note

As described, the above flow is based on the 2019.08 tagged release of Freedom Metal,

located here. Future released may include new initialization files freedom-metal/src/

init.c and freedom-metal/metal/init.h, which may change the low level details

described above. The new methodology is designed to provide additional user control and

flexibility in the startup flow.

9

https://github.com/sifive/freedom-metal/tree/v201908-branch


Chapter 4

Conclusion

The freedom-metal startup code works together with the linker generated symbols to setup the

appropriate boot flow based on the hardware configuration and software requirements.

Required steps such as stack setup, global pointer assignment, and specific linker section ini-

tialization (bss, itim, data) are fundamental to any application working correctly. Other features

like heap sections depend on whether the end application requires it, and may be optional.

10


	Freedom Metal Boot Code
	Freedom Metal Boot Code
	Proprietary Notice
	Release Information

	Chapter 1 Freedom Metal Boot Code
	1.1 Introduction
	1.1.1 RISC-V User Registers
	1.1.2 RISC-V Control & Status Registers (CSRs)


	Chapter 2 Boot Flow Components
	2.1 Linker File
	2.1.1 Linker File Symbols
	Generated Linker Symbols



	Chapter 3 Boot Flow Details
	Chapter 4 Conclusion

