
RISC-V Large Code Model Software Workaround

Version 1.0

© SiFive, Inc.

RISC-V Large Code Model Software

Workaround

Proprietary Notice

Copyright © 2019, SiFive Inc. All rights reserved.

Information in this document is provided as is, with all faults.

SiFive expressly disclaims all warranties, representations, and conditions of any kind, whether

express or implied, including, but not limited to, the implied warranties or conditions of mer-

chantability, fitness for a particular purpose and non-infringement.

SiFive does not assume any liability rising out of the application or use of any product or circuit,

and specifically disclaims any and all liability, including without limitation indirect, incidental, spe-

cial, exemplary, or consequential damages.

SiFive reserves the right to make changes without further notice to any products herein.

Release Information

Version Date Changes

V1.0 September 9, 2019 • Initial release

Contents

1 RISC-V Large Code Model Software Workaround2

1.1 Introduction .. 2

1.2 Linker File Options ..5

1.2.1 Standard Linker Option ...5

1.2.2 Example of Invalid Configuration..6

1.2.3 Workarounds ...7

1.3 Conclusion ... 9

1

Chapter 1

RISC-V Large Code Model Software

Workaround

1.1 Introduction

RISC-V code models are used when building a software program, and they define a method to

generate instruction combinations to access global symbols. There are two types of code mod-

els currently used on RISC-V architectures: -mcmodel=medlow and -mcmodel=medany. Both

code models restrict the generated code to be 2GiB or less. Additionally, both code models

require that global symbols reside within +/- 2GiB (32-bit signed offset) from the generated

code. The below example shows how this range works on 32-bit architectures, using x0-relative

addressing.

2

Figure 1: 32-bit architecture addressing using -mcmodel=medlow

For 32-bit architectures using -mcmodel=medlow, the full 32-bit address range is accessible for

compiling and linking your program.

For 64-bit architectures which use -mcmodel=medany, code can be linked at any base address,

but linked global symbols follow a similar +/- 2GiB range restriction. Depending on the code

base address, there are scenarios where the negative range is generally not used.

3

Figure 2: 64-bit architecture addressing using -mcmodel=medany

In Summary:

• -mcmodel=medlow— Used for 32-bit architectures, this code model requires that the pro-

gram and its statically defined symbols must lie between the absolute addresses -2 GiB and

+2 GiB, which covers the full 32-bit address range. Code is generally linked around address

0x00000000, and instruction pairs lui and ld are used to generate addresses for global

symbols.

• -mcmodel=medany— Used for 64-bit architectures, this code model also generates a 32-bit

signed offset to refer to global symbols. Linked code can reside at any address, and instruc-

tion pairs auipc and ld are used to generate global symbol addresses in a +/- 2GiB window

from the code area.

Both code models limit the address range where linked symbols can reside, but this is not an

issue for 32-bit architectures. The only limit this introduces is on 64-bit architectures using

-mcmodel=medany, where there is a requirement for linked symbols to be outside of +/- 2GiB

from the code area.

4

Note

As an optimization, if an address is out of range of auipc, but within range of zero-base

addressing, then the linker will convert the auipc to an lui. This is primarily to make unde-

fined weak references work, as these will always be zero at the end of linking, which is

generally not in range of auipc when -mcmodel=medany is used.

There is a lot more detail, and a precise description of RISC-V code models in this blog post:

https://www.sifive.com/blog/all-aboard-part-4-risc-v-code-models.

1.2 Linker File Options

Before we dig into an example it is worthwhile to note the different linker combinations that are

available for SiFive’s cores in the freedom-e-sdk repository. The options are selected by using

the LINK_TARGET option, described in the repository README file.

• metal.default.lds — This linker option maps code and data to Flash, with the exception of

uninitialized RAM section .bss, and stack and heap, which always reside in RAM

• metal.ramrodata.lds — This linker option maps read-only data sections .rodata and .rdata

to RAM, in addition to .bss, stack, and heap, placing executable code in flash section

• metal.scratchpad.lds — This linker option maps everything to RAM, flash is not used

1.2.1 Standard Linker Option

The linker file example below represents an example memory map configuration for some of

SiFive’s 32-bit and 64-bit standard cores.

MEMORY

{

ram (wxa!ri) : ORIGIN = 0x80000000, LENGTH = 0x4000

flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000

}

It should be noted that the MEMORY section layout is the same for most linker file options listed

previously. The difference in how a compiled program is organized, and whether the defined

regions are actually used, is controlled by the SECTIONS and PHDRS areas of the linker file.

PHDRS

{

flash PT_LOAD;

ram_init PT_LOAD;

itim_init PT_LOAD;

ram PT_NULL;

itim PT_NULL;

}

5

https://www.sifive.com/blog/all-aboard-part-4-risc-v-code-models
https://github.com/sifive/freedom-e-sdk
https://github.com/sifive/freedom-e-sdk#sifive-freedom-e-sdk-readme

SECTIONS

{

__stack_size = DEFINED(__stack_size) ? __stack_size : 0x400;

PROVIDE(__stack_size = __stack_size);

__heap_size = DEFINED(__heap_size) ? __heap_size : 0x400;

PROVIDE(__metal_boot_hart = 0);

PROVIDE(__metal_chicken_bit = 0);

.init :

{

KEEP (*(.text.metal.init.enter))

KEEP (*(SORT_NONE(.init)))

KEEP (*(.text.libgloss.start))

} >flash AT>flash :flash

.text :

{

(.text.unlikely .text.unlikely.)

(.text.startup .text.startup.)

(.text .text.)

(.itim .itim.)

(.gnu.linkonce.t.)

} >flash AT>flash :flash

...

The above example shows a small piece of metal.default.lds, and does not load any executable

code into ram or itim since it uses PT_NULL.

This standard memory map will build correctly for different combinations of code and data sec-

tions being mapped to either ram or flash. The code model description can be found in set-

tings.mk which is located in the /bsp path for your SiFive project. For example, when repre-

sented as RISCV_CMODEL=medlow in settings.mk, this gets translated to -mcmodel=medlow

through the build (Makefile) process.

1.2.2 Example of Invalid Configuration

Let’s look at an example using 64-bit architecture where there is a requirement to have a mem-

ory port at address 0x1_0000_0000, and we want linked symbols to reside there. If our code

base remains at address 0x20400000, then the updated linker map will look like this:

MEMORY

{

ram (wxa!ri) : ORIGIN = 0x100000000, LENGTH = 0x4000

flash (rxai!w) : ORIGIN = 0x20400000, LENGTH = 0x1fc00000

}

6

This configuration will not build correctly since linked symbols will reside in the ram section,

which is greater than 2 GiB from the flash section where code is mapped. If this memory map is

used on a 64-bit architecture using -mcmodel=medany, it will not link successfully. Generated

errors will contain the following phrase:

relocation truncated to fit:

The error message will contain a lot of other detail that we will omit for simplicity.

There is currently no method for a RISC-V software program to generate the instruction combi-

nations to access global symbols outside of a 2GiB window. This applies to all current code

models available. There is development underway to address this limitation, and support will be

provided in what will be called a large code model. Until then, the workaround is in the form of

software pointers.

1.2.3 Workarounds

Example #1

Even if global symbols cannot be linked with the toolchain, we can still access custom data sec-

tions using 64-bit software pointers. The following example creates a pointer to access memory

at location 0x1_0000_0000:

// Create defines for new memory region

#define LARGE_DATA_SECTION_ADDRESS 0x100000000

#define LARGE_DATA_SECTION_SIZE_IN_BYTES 0x4000

#define DWORD_SIZE 8

int main(void)

{

/**/

/* Example #1 - use pointer to access 64-bit region */

/**/

uint32_t idx;

uint64_t *data_array, addr;

data_array = (uint64_t *)LARGE_DATA_SECTION_ADDRESS;

for (addr = 0, idx = 0; \

addr < LARGE_DATA_SECTION_SIZE_IN_BYTES; \

addr += DWORD_SIZE, idx++) {

// Simply writing data to our region outside of 32-bit range

data_array[idx] = addr;

}

}

7

Example #2

Here we use an existing freedom-metal data structure to define a new region along with an

available API to access attributes of the region.

// ***

// Create new structure to define a new memory region

// This method leverages existing freedom-metal struct format

// ***

#include <metal/memory.h> // required for data struct

// Create defines for new memory region

#define LARGE_DATA_SECTION_ADDRESS 0x100000000

#define LARGE_DATA_SECTION_SIZE_IN_BYTES 0x4000

#define DWORD_SIZE 8

// Create our struct using existing metal_memory type in freedom-metal

const struct metal_memory large_data_mem_struct;

const struct metal_memory large_data_mem_struct = {

._base_address = LARGE_DATA_SECTION_ADDRESS,

._size = LARGE_DATA_SECTION_SIZE_IN_BYTES,

._attrs = {

.R = 1,

.W = 1,

.X = 0,

.C = 1,

.A = 0},

};

int main(void)

{

// Example #2 - Use structure which defines 64-bit addressable regions,

// using existing structure type to define base addr,

// size, and permissions

size_t _large_data_size;

uintptr_t _large_data_base_addr;

int _atomics_enabled, _cachable_enabled;

uint64_t *large_data_array;

_large_data_base_addr = \

metal_memory_get_base_address(&large_data_mem_struct);

_large_data_size = metal_memory_get_size(&large_data_mem_struct);

_atomics_enabled = metal_memory_supports_atomics(&large_data_mem_struct);

_cachable_enabled = metal_memory_is_cachable(&large_data_mem_struct);

large_data_array = (uint64_t *)_large_data_base_addr;

// Access our new memory region

// large_data_array[x] = 0x0;

// ... add functional code ...

8

return 0;

}

This example can be used if multiple data regions are required with different attributes. Once

the base address is assigned within the required data struct, then pointers can be used to

access memory, similar to Example #1 above. The existing struct and API format allows for mul-

tiple regions to be created easily.

1.3 Conclusion

We can simply generate pointers to create our own global memory regions, which don’t require

dependence on the RISC-V toolchain. Additionally, SiFive’s freedom-metal API provides a

method to define and manage the base address, size, and attributes for these custom defined

global memory regions until a large code model is available for RISC-V.

9

	RISC-V Large Code Model Software Workaround
	RISC-V Large Code Model Software Workaround
	Proprietary Notice
	Release Information

	Chapter 1 RISC-V Large Code Model Software Workaround
	1.1 Introduction
	1.2 Linker File Options
	1.2.1 Standard Linker Option
	1.2.2 Example of Invalid Configuration
	1.2.3 Workarounds
	Example #1
	Example #2

	1.3 Conclusion

